طبقه‌بندی روش‌های تخمین ماتریس مبداء- مقصد با اطلاعات شمارش حجم کمان‌ها در شبکه‌های خلوت و شلوغ جاده‌ای

نویسندگان

1 استادیار، دانشکده عمران، آب و محیط‌زیست، دانشگاه شهید بهشتی، تهران، ایران

2 دانش‌آموخته کارشناسی‌ارشد، مرکز تحقیقات راه، مسکن و شهرسازی‌، تهران، ایران

چکیده

یک ورودی ضروری برای فرآیند برنامه‌ریزی حمل‌ونقل میزان تقاضای سفر در قالب ماتریس مبداء- مقصد است. روش‌های مرسوم برای دسترسی مستقیم به این ماتریس که مبتنی بر انجام مصاحبه و آمارگیری در محل‌های مشخص بوده، پرهزینه و زمان‌بر هستند. از این‌رو به منظور روش‌های ریاضی مبتنی بر آمار شهودی مانند حجم ترافیک در معابر شبکه روز به روز محبوبیت بیشتری در مطالعات حمل‌ونقل پیدا کرده‌اند. این روش­ها به این صورت تعریف می­شوند که با در دست داشتن یک ماتریس مبداء- مقصد اولیه و نیز اطلاعات جریان ترافیک مشاهده شده فعلی در تعدادی از معابر شبکه، به­دنبال برآورد ماتریسی هستند که با داشتن کمترین فاصله از ماتریس اولیه، در صورت تخصیص به شبکه، حجم­های مشاهده شده را بازتولید کند. از آن‌جا که روش‌های مرسوم در دست‌یابی به این ماتریس که مبتنی بر انجام مصاحبه و آمارگیری در محل هستند، پرهزینه و وقت‌گیر بوده و موجبات مزاحمت برای مردم را در پی دارند، روش‌های ریاضی مبتنی بر آمار مشاهده شده (مانند شمارش حجم عبوری از معابر شبکه) روز به روز گسترش بیشتری پیدا می‌کنند. در این پژوهش روش­های برآورد ماتریس مبداء- مقصد را به­لحاظ عملکرد شبکه می­توان به شبکه­های شلوغ و خلوت تقسیم و ویژگی­های هریک بررسی و ارایه شده است.

کلیدواژه‌ها


ذکایی آشتیانی، ه. و محمودآبادی، م.، (1380)، "تصحیح ماتریس مبدا- مقصد با اطلاعات شمارش حجم (مطالعه مورد شهرر مشهد)"، نشریه علمی امیرکبیر، (2)25،
ص. 149-162.

 

-فتوره­چی، ن. (2009)، "تصحیح ماتریس تقاضا با استفاده از اطلاعات شمارش حجم برای شبکه حمل‌ونقل همگانی بر اساس تخصیص تکمیلی"، دانشکده مهندسی عمران، دانشگاه صنعتی شریف.

 

-ماهپور، ع.ر. ممدوحی، الف.ر.، (1398)، 'اثرسنجی روش تخصیص ترافیک بر دقت نتایج تصحیح ماتریس مبدا- مقصد در روش جریان فازی ترافیک"، پژوهشنامه حمل و نقل، (3)16، ص. 1-9.

 

-Ashok, K., (1996), “Estimation and prediction of time-dependent origin-destination flows”, PhD thesis in transportation systems at the Massachusetts Institute of Technology.

 

-Balakrishna, R., (2006), “Off-line calibration of dynamic traffic assignment models”, In partial fulfillment of the requirements for the degree of doctor of philosophy in transportation systems at the Massachusetts Institute of Technology.

 

-Bayer, J. L., (1998), “Estimation of origin-destination matrices using traffic counts- A literature survey”, international institute for applied systems analysis, A-2361, Austria.

 

-Bell, M., (1991a), “The estimation of origin-destination matrices by constrained generalized least squares”, Transportation Research, Part B: Methodological 25,
pp.13-22.

 

-Bell, M., (1991b), “The real time estimation of origin-destination flows in the presence of platoon dispersion”, Transportation Research 25B, pp.115-125.

 

-Bera, S., Krishna Rao, K. V., (2011), “Estimation of origin destination matrix from traffic counts: the state of the art”, European transport n.49, 3-23.

 

-Bierlaire, M. and Toint, Ph. L., (1995), “MEUSE: an origin-destination matrix estimator that exploits structure”, Transportation Research, Part B: Methodological 29, pp.47-60.

 

-Bierlaire, M., (2002), “The total demand scale: a new measure of quality for static and dynamic origin-destination trip tables”, Transportation Research, Part B: Methodological 36: pp.837-850.

-Bosserhoff, D., (1985), “Statische Verfahren zur Ermittlung von Quell-Ziel-Matrizen im öffentlichen Personennahverkehr”, ein Vergleich, Dissertation, University of Karlsruhe.

 

-Cascetta, E., (1984), “Estimation of trip matrices from traffic counts and survey data: a generalized least squares estimator”, Transportation Research, Part B: Methodological 18, pp.289-299.

 

-Cascetta, E. and Nguyen, S., (1988), “A unified framework for estimating or updating origin/destination matrices from traffic counts”, Transportation Research, Part B: Methodological 22, pp.437-455.

 

-Cascetta, E. and Postorino, M. N., (2001), “Fixed point approaches to the estimation of O/D matrices using traffic counts on congested networks”, Transportation Science 35, pp.134-147.

 

-Codina, E., Garcia, R. and Marin, A., (2006), “New algorithm alternatives for the O-D matrix adjustment problem on traffic networks”, European Journal of Operational Research 175: pp.1484-1500.

 

-Erlander, S., Jornsten, K. O. and Lundgren, J. T., (1984), “On the estimation of trip matrices in the case of missing and uncertain data”, Technical report LiTH-MAT-R-84-20, Department of Mathematics, Linkoping University, Sweden.

 

-Fisk, C. S., (1988), “On combining maximum entropy trip matrix estimation with user optimal assignment”, Transportation Research 22B.

 

-Fisk, C. S., (1989), “Trip matrix estimation from link traffic counts: the congested network case”, Transportation Research 23B.

 

-Freidrich, M., Nokel, K. and Mott, P., (2000), “Keeping passenger surveys up-to-date; A fuzzy approach”, Transportation Research Board, Washington, D.C.

 

-Garcia, R. and Verastegui, D., (2008), “A column generation algorithm for the estimation of origin destination matrices in congested traffic networks”, European Journal of Operational Research 184,
 pp.860-878.

-Gur, Y. J., Turnquist, G., Schneider, M., LeBlanc, L. and Kurth, D., (1980), “Estimation of an origin-destination trip table based on observed link volumes and turning movements”, Technical report RD-801034, FHWA, U.S. Department of Transportation, Washington D.C.

 

-Hazelton, M. L., (2000), “Estimation of origin–destination matrices from link flows on uncongested networks”, Transportation Research, Part B: Methodological 34, pp.549-566.

 

-Henn, V. (2001), “Fuzzy rout choice model for traffic assignment” Fuzzy sets and systems. No.­116, pp.77-101.

 

-Hogberg, P., (1976), “Estimation of parameters in models for traffic prediction: a non-linear regression approach”, Transportation Research, Vol. 10: 263-265.

 

-Jin, S., Xu-hong, Li., (2008), “Estimating the highway freight origin-destination matrix from multi-source data based on fuzzy programming theory”, international workshop on modeling, simulation and optimization.

 

-Jornsten, K. and Nguyen, S., (1979), “On the estimation of a trip matrix from network data”, Technical Report LiTH-MAT-R-79-36, Department of Mathematics, University of Linkoping, Linkoping, Sweden, (revised, April 1983).

 

-Jornsten, K. and Nguyen, S. (1983), “Estimation of an OD trip matrix from network data: dual approaches”, Technical report LiTH-MAT-R-1983-10, Department of Mathematics, Linkoping University, Sweden.

 

-Kim, H., Beak, S. and Lim, Y., (2001), “Origin-destination matrices estimated with a genetic algorithm from link traffic counts”, Transportation Research Record 1771, Transportation Research Board, Washington, D.C., pp.156-163.

 

-LeBlanc, L. J. and Farhangian, K., (1982), “Selection of a trip table which reproduces observed link flows”, Transportation Research 16B.

 

-Li, B., (2005), “Bayesian inference for O-D matrices of transport networks using the EM algorithm”, Technometrics 47(4),
pp.399-408.

 

-Liu, S. and Fricker, J. D., (1996), “Estimation of a trip table and the Q parameter in a stochastic network”, Transportation Research, Part A: Policy and Practice 30, pp.287-305.

 

-Lo, H., Zhang, N. and Lam, W., (1996) “Estimation of an origin–destination matrix with random link choice proportions: a statistical approach”, Transportation Research, Part B: Methodological 30, pp.309-324.

 

-Lo, H. P., Zhang, N. and Lam, W. H. K., (1999), “Decomposition algorithm for statistical estimation of OD matrix with random link choice proportions from traffic counts”, Transportation Research, Part B: Methodological 33, pp.369-385.

 

-Lo, H. P. and Chan, C. P., (2003) “Simultaneous estimation of an origin-destination matrix and link choice proportions using traffic counts”, Transportation Research, Part A: Policy and Practice 37, pp.771-788.

 

-Lundgren, J. T. and Peterson, A., (2008), “A heuristic for the bilevel origin-destination matrix estimation problem”, Transportation Research, Part B: Methodological 42, pp.339-354.

 

-Maher, M. J., (1983), “Inferences on trip matrices from observations on link volumes: a Bayesian statistical approach”, Transportation Research, Part B: Methodological 17: 435-447.

 

-Nguyen, S., (1977), “Estimating an OD matrix from network data: a network equilibrium approach”, Publication No. 87, Center de recherché sur les transports, Universite de Montreal, Montreal, Quebec H3C 3J7.

 

-Nguyen, S., (1984), “Estimating origin-destination matrices from observed flows, Transportation Research. 17B.

 

-Ortúzar, J. D., Willumsen, L. G., (2011), “Basic sampling theory. In Modelling Transport”, Wiley, Chichester.

 

Reddy, K. H. and Chakroborty, P., (1998), “A fuzzy inference based assignment algorithm to estimate O-D matrix from link volume counts”, Comput., Environ. and Urban Systems, Vol. 22, No. 5, pp.409-423.

 

-Ren, J. and Rahman, A., (2009), “Automatically Balancing Intersection Volumes in A Highway Network”, 12th TRB Transportation Planning Application Conference.

 

-Robillard, P., (1975) “Estimating the O-D matrix from observed link volumes”, Transportation Research, Vol. 9, pp.123-128.

 

-Rosinowski, J., (1994), “Entwicklung und Impleme ntierung eines ÖPNV-Matrixkorrekturverfahrens mit Hilfevon Methoden der Theorie unscharfer Mengen (Fuzzy-Sets-Theorie), Master thesis, University of Karlsruhe.

 

-Shafahi, Y., Faturechi, R., (2009), “A Practical OD matrix estimation model based on Fuzzy set theory for large cities”, 23rd European Conference on Modelling and Simulation.

 

-Sheffi, Y., (1984), “Urban transportation networks: Equilibrium analysis with mathematical programming methods”,. Prentice-Hall.

 

-Sherali, H. D., Sivanandan, R. and Hobeika, A. G., (1994), “A linear programming approach for synthesizing origin-destination trip tables from link traffic volumes”, Transportation Research, Part B: Methodological 28, pp.213-233.

 

-Sherali, H. D., Arora, N. and Hobeika, A. G., (1997), “Parameter optimization methods for estimating dynamic origin-destination trip-tables”, Transportation Research, Part B: Methodological 31: pp.141-157.

 

-Sherali, H. D. and Park, T., (2001), “Estimation of dynamic origin-destination trip tables for a general network”, Transportation Research, Part B: Methodological 35: pp.217-235.

 

-Sherali, H. D., Narayanan, A. and Sivanandan, R., (2003), “Estimation of origin-destination trip-tables based on a partial set of traffic link volumes”, Transportation Research, Part B: Methodological 37, pp.815-836.

 

-Snickars, F. and Weibull, J. W., (1977), “A minimum information principle, theory and practice”, Regional Science and Urban Economics, 7.

 

-Spiess, H., (1987) “A maximum-likelihood model for estimating origin-destination matrices”, Transportation Research, Part B: Methodological 21, pp.395-412.

 

-Spiess, H., (1990), “A gradient approach for the O-D matrix adjustment problem”, EMME/2 Support Center, CH-2558 Aegerten, Switzerland, http://www.spiess.ch/emme2/demadj/demadj.html.

 

-Teodorovic, D., (1999), “Fuzzy logic systems for transportation engineering: the state of the art”, Transportation Research, Part A: Policy and Practice 33, pp.337-364.

 

-Van der Zijpp, N. J. and Lindveld, C. D. R., (2001), “Estimation of origin-destination demand for dynamic assignment with simultaneous route and departure time choice”, Transportation Research Record 1771, Transportation Research Board, Washington, D.C. pp. 75-82.

 

-Van Zuylen, J. H., (1978), “The information minimizing method: validity and applicability to transport planning”, In: New Developments in Modelling Travel Demand and Urban Systems (edited by G. R. M. Jansen et al).

 

-Van Zuylen, J. H. and Willumsen L. G., (1980), “The most likely trip matrix estimated from traffic counts”, Transportation Research, Part B: Methodological 14, pp.281-293.

-Van Zuylen, J. H. and Branston, D. M., (1982), “Consistent link flow estimation from counts”, Transportation Research, Part B: Methodological 16, pp.473-476.

 

-Vortisch, P. Mohl, P., (2003), “Traffic State Estimation in the Traffic Management Center of Berlin”, Transportation Research Board 2003 annual meeting.

 

-Willumsen, L. G., (1978), “Estimation of O-D matrix from traffic counts: a review”, Working Paper 99, Institute for Transport Studies, University of Leeds.

 

-Willumsen, L. G., (1981), “Simplified transport models based on traffic counts”, Transportation 10, pp.257-278.

 

-Wilson, A. G., (1970), Entropy in Urban and Regional Modeling, Methuen, Inc., New York.

 

-Xie, C., Kockelman, K. M., Waller, S. T. (2010),”A maximum entropy Method for origin-destination trip matrix estimation”, Transportation Research Record, Journal of Transportation Research Board, Washington.

 

Xie, C., Kockelman, K. M., Waller, S. T. (2011), “maximum entropy-least squares estimator for elastic origin-destination matrix estimation”, Transportation Research, Part B: Methodological 45, pp.1465–1482.

 

-Xu, W. and Chan, Y., (1993a), “Estimating an origin-destination matrix with fuzzy weights. Part 1: Methodology”, Transportation Planning and Technology 17, pp. 127-144.

 

-Xu, W. and Chan, Y., (1993b),  “Estimating an origin-destination matrix with fuzzy weights. Part 2: Case Studies”, Transportation Planning and Technology 17, pp.145-164.

 

-Yang, H., Iida Y. and Sasaki T., (1991), “An analysis of the reliability of an origin-destination trip matrix estimated from traffic counts”, Transportation Research, Part B: Methodological 25, pp.351-363.

-Yang, H., Sasaki, T., Iida, Y. and Asakura, Y., (1992), “Estimation of origin-destination matrices from link traffic counts on congested networks”, Transportation Research, Part B: Methodological 26, pp.417-433.

 

-Yang, H., Sasaki, T. and Iida, Y., (1994), “The Equilibrium-based origin-destination matrix estimation problem”, Transportation Research, Part B: Methodological 28, pp. 23-33.

 

-Yang, H., (1995), “Heuristic algorithms for the bi-level origin-destination matrix estimation problem”, Transportation Research, Part B: Methodological 29: pp.231-242.

 

-Yang, H. and Zhou, J., (1998), “Optimal traffic counting locations for origin-destination matrix estimation”, Transportation Research, Part B: Methodological 32, pp.109-126.

 

-Yang, H., Meng, Q. and Bell, M. G. H., (2001), “Simultaneous estimation of the origin-destination matrices and travel-cost coefficient for congested networks in stochastic user equilibrium”, Transportation Science 35: pp.107-123.

 

-Yang, C., Chootinan, P. and Chen, A., (2003), “Traffic counting location planning using genetic algorithm”, Journal of the Eastern Asia Society for Transportation Studies, Vol.5: pp.898-913.

 

-Yang, H., Yang, C. and Gan, L., (2006), “Models and algorithms for the screen line-based traffic-counting location problems”, Computers & Operations Research 33, pp.836-858.

 

-Yousefikia, M., Mamdoohi, A.R., Moridpour, S., Noruzoliaee, M.H. and Mahpour, A., (2013), “A study on the generalized T Flow Fuzzy OD estimation”, In Proceedings of Australasian Transport Research Forum 2013, Brisbane, Australia.

 

-Zhou, H., Liu, W. and Li, L., (2008), “Estimation of origin-destination matrix from uncertain link counts using mixed intelligent algorithm”, International conference on intelligent computation technology and automation.