روش‌های گوناگون تثبیت خاک لایروبی و کربناته

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد، پژوهشکده ساختمان و مسکن، تهران، ایران

2 استادیار، مرکز تحقیقات راه، مسکن و شهرسازی، تهران، ایران

3 دانشیار، مرکز تحقیقات راه، مسکن و شهرسازی، تهران، ایران

چکیده

خاک‌های لایروبی از لایروبی احداثی (حاصل احداث سازه‌‌های هیدرولیکی) یا لایروبی نگهداری (حاصل نگهداری سازه‌‌های هیدرولیکی) به دست می‌‌آیند. با توجه حجم زیاد، بی استفاده رها شدن و آلودگی اندک این خاک‌ها؛ پژوهشگران در اندیشه‌‌ی به کار گرفتن آن‌ها به عنوان جایگزین خاک هستند. ضعف باربری، ویژگی خردشوندگی و دشوار بودن پیش‌‌بینی رفتار، برخی از مسایل خاک مشکل آفرین کربناتی است. خاک لایروبی غیرکربناته نیز اغلب ویژگی‌های فنی مناسبی ندارد. خلیج فارس با ساحل‌‌های پوشیده از رسوب‌‌های کربناته نیز ناگزیر لایروبی می‌گردد. با توجه به اهمیت بسیار زیاد این آبراه در اقتصاد و تامین انرژی جهان، و همچنین مشکل‌‌ساز بودن خاک کربناته‌‌ی موجود در آن (برای نمونه ایجاد مشکل در پی سکوهای استخراج نفت)؛ خاک کربناته‌‌ی خلیج فارس نیز مانند خاک لایروبی نیازمند بهسازی است. یکی از روش‌‌های پر کاربرد بهسازی خاک، تثبیت است. جدا از کاربرد مواد نوین (مانند پلیمر و فیبر)، همچنان تثبیت با سیمان و آهک پرکاربردترین روش تثبیت برای انواع گوناگون خاک‌‌ها هستند. استفاده از خاک تثبیت شده در سازه‌های مهندسی مانند بدنه‌ی راه به عنوان اساس و زیراساس؛ افزون بر ارزش اقتصادی، اهمیت زیست محیطی و فنی نیز خواهد داشت. بهسازی و تثبیت خاک با افزودنی‌ها و روش‌‌های گوناگون انجام می‌‌شود. بسته به نوع خاک و مواد موجود در هر منطقه، روش تثبیت مناسب متفاوت است؛ بنابراین نمی‌‌توان نسخه‌‌ی یکسانی برای تثبیت خاک‌‌ها پیشنهاد کرد. این مقاله به خاک‌‌های کربناته و لایروبی، روش‌های اصلاح و تثبیت آن‌‌ها؛ و مروری بر برخی تجربه‌های عملی تثبیت این خاک‌‌ها پرداخته است.

کلیدواژه‌ها


-"آیین‌‌نامه روسازی آسفالتی راه‌‌های ایران"، نشریه شماره 234، تجدید نظر اول؛ (1392)­، معاونت برنامه ریزی و نظارت راهبردی رییس جمهور، مرکز اسناد، مدارک و انتشارات، چاپ سوم، ویراست 2.
-پاک، ع. و شیخ انصاری، ع.ر.، (1377)­، "نقش و اهمیت مسائل محیط زیستی در پروژه­های لایروبی"، سومین کنفرانس بین المللی سواحل، بنادر و سازه های دریایی، تهران.
-پاک، ع. رحمانی، ا. مقدم، م. و درخشان نیک، پ.، (1390)­،"لایروبی- جلد اول: آشنایی یا جنبه های فنی و اجرایی"، پژوهشکده حمل ونقل، بخش پژوهشی حمل و نقل و تکنولوژی دریایی،  تهران.
-پاک، ع. رحمانی، ا. مقدم، م. و درخشان نیک، پ.، (1390)، "لایروبی- جلد دوم: راهنمای ارزیابی آثار زیست محیطی"، پژوهشکده حمل ونقل، بخش پژوهشی حمل و نقل و تکنولوژی دریایی، تهران.
-پاک نژاد، ع. (1386)، "طرح و اجرای پروژه های لایروبی"، شرکت طرح نو اندیشان، تهران، ص. 136.
-پولوس، اچ، جی، (1387)، "ژئوتکنیک دریایی"، جهاد دانشگاهی واحد صنعتی اصفهان، مترجم: روشن ضمیر، محمدعلی، چاپ یکم.
-حسنلوراد، م. صالح زاده، ح. و شاه نظری، ح.، (1388)، "اصلاح خاکهای ماسه‌‌ای کربناته با استفاده از تزریق شیمیایی"، نشریه مهندسی عمران امیر کبیر، سال 41، تابستان، شماره 1، ص95-104.
-حلاج شوشتری، م.،( 1392)، "تعیین و ارزیابی CBR و ضریب برجهندگی لایه‌‌های تثبیت شده روسازی راه (مطالعات موردی استان خوزستان)"، دانشگاه پیام نور واحد شمیرانات؛ گروه علمی مهندسی عمران؛ پایان نامه کارشناسی ارشد؛ زمستان.
-"دستورالعمل تثبیت لایه‌‌های خاکریز و روسازی راه‌‌ها"، (1382)، نشریه شماره 268؛ سازمان مدیریت و برنامه‌‌ریزی کشور.
-رسولی، م.ر.، (1391)، "بررسی مقایسه‌‌ای رفتار برشی سه محوری ماسه کربناته و کوارتزی"، پایان‌‌نامه کارشناسی ارشد، رشته مهندسی عمران، گرایش خاک و پی، دانشگاه بین‌‌المللی امام خمینی، دانشکده فنی مهندسی، گروه مهندسی عمران.
-طباطبایی، ا.م.، (1385)، "روسازی راه"، مرکز نشر دانشگاهی، چاپ دوازدهم، تهران.­
-عابدی، ی. و یوسفی‌راد، م.، (1394)، "اصلاح و بهینه‌سازی دانه‌بندی خاک جهت بهبود ظرفیت باربری"، نخستین کنفرانس سراسری معماری و مهندسی عمران، بصورت الکترونیکی، پردیس بین الملل توسعه ایده هزاره.
-محمدپور سلوط، ر. (1394)، "بررسی مدل رفتاری ماسه‌‌ی کربناته و تخمین پارامترهای حالت آن"، پایان‌‌نامه کارشناسی ارشد، رشته مهندسی عمران؛ گرایش خاک و پی، دانشگاه بین‌‌المللی امام خمینی، دانشکده فنی مهندسی؛ گروه مهندسی عمران.
-مظاهری، ا.ر. پاکنهاد، م. و ترکمن، م.، (1397)، "بهسازی سطحی خاک‌های سیلتی با تغییر دانه‌بندی مصالح و ارائه طرح اختلاط بهینه"، نشریه مهندسی عمران و محیط زیست دانشگاه تبریز، سال 41، جلد 48، شماره 1، پیاپی 90، ص. 103 – 108.
-موسوی‌‌پور،  خ.، (1390)، "تثبیت خاک ماسه بادی با سیمان پرتلند معمولی"، دانشگاه هرمزگان، دانشکده فنی و مهندسی، گروه مهندسی عمران، گرایش مکانیک خاک وپی، پایان نامه کارشناسی ارشد؛ اسفند.
-هاشمی طباطبایی، س.، آقایی آرایی، ع.، کاتبی، ب. و سلامت، ا.س.، (1397)، "استفاده از سرباره فولاد مخلوط با خاکستر جهت تثبیت لایه زیراساس جاده"، فصلنامه مهندسی ساختمان و علوم مسکن، دوره دوازدهم، شماره 22، بهار، ص13.-19.
-Abdullah, H. H., Shahin, M. A. and Walske, M. L., (2019), “Geo-mechanical behavior of clay soils stabilized at ambient temperature with fly-ash geopolymer-incorporated granulated slag”, Soils and Foundations, No. 59, December 2019, pp. 1906-1920. doi: https://doi.org/10.1016/j.sandf.2019.08.005.
-Abdullah, H. H., Shahin, M. A., Walske, M. L. and Karrech, A., (2021), “Cyclic behaviour of clay stabilised with fly-ash based geopolymer incorporating ground granulated slag”, Transportation Geotechnics, Vol. 26, Jan. 2021, 100430. doi: https://doi.org/10.1016/j.trgeo.2020.100430
-Abu-Farsakh, M., Dhakal, S. and Chen, Q., (2015), “Laboratory characterization of cementitiously treated/stabilized very weak subgrade soil under cyclic loading”, Soils andFoundations, 55(3), pp.504–516.
-Achampong, F., (1996), “Evaluation of Resilient Modulus for Lime and Cement Stabilized Synthetic Cohesive Soils,” Ph.D. Thesis, Wayne State University, Detroit, MI.
-ACI 230.1R-90., (1990), “State-of-the-Art report on soil Cement”, ACI Material Journal, 87 (4).
-Adeyanju, E., Austin Okeke, C., Akinwumi, I. and Busari, A., (2020), “Subgrade Stabilization using Rice Husk Ash-based Geopolymer (GRHA) and Cement Kiln Dust (CKD)”, Case Studies in Construction Materials, December 2020, e00388. doi: https://doi.org/10.1016/j.cscm.2020.e00388.
-AI-Amoudi, O.S.B., (1992), “Studies on soil-foundation interaction in the sabkha environment of Eastern Province of Saudi Arabia”, Ph.D. diss., Dep. Civ. Eng., King Fahd Univ. Petroleum and Minerals, Dhahran, Saudi Arabia.
-Aiban, S.A., (1994), “A study of sand stabilization in eastern Saudi Arabia”, Engineering Geology 38,
pp. 65-79.
-Akili, W. and Monismith, C.L., (1978), “Permanent deformation characteristics of cement-emulsion stabilized sand”, Proc. AAPT, 47, pp. 252 265.
-Al-Abdul Wahhab, H. I. and Asi, I. M., (1997), “Improvement of Marl and Dune Sand for Highway Construction in Arid Areas”, Building and Environment, No. 32, May 1997, pp. 271-279.
doi: https://doi.org/10.1016/S0360-1323(96)00067-4.
-Almajed, A., Abbas, H., Arab, M., Alsabhan, A., Hamid, W., Al-Salloum, Y., (2020), “EnzymeInduced Carbonate Precipitation (EICP)-Based Methods for Ecofriendly Stabilization of Different Types of Natural Sands”, Journal of Cleaner Production, No. 274, 20 November 2020, 122627. doi: https://doi.org/10.1016/j.jclepro.2020.122627.
-Arora, S. and Aydilek, A. H., (2005), “Class F Fly-Ash-Amended Soils as Highway Base Materials.” ASCE Journal of Materials in Civil Engineering, 17, 6, pp.640 – 649.
-Ata, A. and Vipulanandan, C., (1999), “Factors Affecting Mechanical and creep Properties of Silicate-Grouted Sands”, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 125, No. 10, pp. 868-876.
-Baghdadi, Z.A., (1990), “Utilization of kiln dust in clay stabilization.” J. King Abdulaziz Univ.: Eng Sci, 2, pp.53 – 163.
-Bandara, N., Jensen, E. and Binoy, T.H., (2016), “Performance Evaluation Of Subgrade Stabilization With Recycled Materials”, Mdot Research Project No. Or14-009, Mdot Contract No. 2013-0065, Department of Civil and Architectural Engineering Lawrence Technological University, February 29.
-Barbu, B., and McManis, K., (2005), “Study of Problematic Silts Stabilization,” Proceedings of Transportation Research Board 2005 Annual Meeting (CD-ROM), Transportation Research Board, Washington DC.
-Bel Hadj Ali, I., Lafhaj, Z., Bouassida, M. and Said, I., (2014), “Characterization of Tunisian marine sediments in Rades and Gabes harbors”, International Journal of Sediment Research, Vol. 29, No. 3,
pp. 391–401.
-Bergado, D. T., Anderson, L. R., Miura, N., and Balasubramaniam, A. S., (1996), “Soft ground improvement”, ASCE Press.
-Bolton, M. D., (1986), “The Strength and Dilatancy of Sands”, Geotechnique, Vol. 36, No. 1, pp. 65-78.
-Bray, R.N., Bates, A.D. and Land, J.M., (1996), “dredging: a Handbook for Engineers, Chapter 13: Dredging and the environment”, Second edition, Science Direct, pp.371-387.
-Chan, C., Mizutani, T. and Kikuchi, Y., (2011), “Reusing Dredged Marine Clay By Solidification With Steel Slag: A Study Of Compressive Strength”, International Journal Of Civil And Structural Engineering Vol. 2, No 1, pp. 270-279.
-Chan, C.M. and Shahri, Z., (2016), “geo-characterisation of dredged marine soils for potential reuse assessment in civil engineering applications”, arpn journal of engineering and applied sciences, Vol. 11,
No. 11, June, pp. 7193- 7197.
-Chang, D. T., (1995), “Resilient Properties and Microstructure of Modified Fly Ash-Stabilized Fine Grained Soils,” Transportation Research Record, 1486, pp.88 – 96.
-Chindaprasirt, P., Kampala, A., Jitsangiam, P. and Horpibulsuk, S., (2020), “Performance and evaluation of calcium carbide residue stabilized lateritic soil for construction materials”, Case Studies in Construction Materials, No. 13, December 2020, e00389. doi: https://doi.org/10.1016/j.cscm.2020.e00389
-Chowdary, B., Ramanamurty, V. and Pillai, R. J., (2020), “Fiber reinforced geopolymer treated soft clay – An innovative and sustainable alternative for soil stabilization”, Materials Today: Proceedings, Vol. 32, Part 4, pp. 777-781. doi: https://doi.org/10.1016/j.matpr.2020.03.574.
-Cockrell, C. F., Muter, R. B., Leonard, J. W, and Anderson, R. E.­, (1970), “Application of flotation for recovery of calcium constituents from limestone modified fly ash”, West Virginia University, Coal Resource Bureau and School of Mines.
-Consoli, N. C., Foppa, D., Festugato, L., and Heineck, K. S., (2007), “Key parameters dictating for strength control of artificially cemented soils.” J. Geotech, Geoenviron, Eng., 133, 2, pp.197–205.
-Consoli, N.C., da Fonseca, A.V., Silva, S.R., Cruz, R.C. and Fonini, A., (2012), “Parameters controlling stiffness and strength of artificially cemented soils”, Ge´otechnique 62, No. 2, pp.177–183.
-Consoli, N.C., Rosa, A.D., Corte, M.B., da Silva Lopes Jr, L. and Consoli, B.S., (2011), “Porosity-Cement Ratio Controlling Strength of Artificially Cemented Clays”, journal of materials in civil engineering, asce, august, 23, pp. 1249-1254.
-Consoli, N.C., Viana da Fonseca, A., Cruz, R.C. and Heineck, K.S., (2009), “Fundamental Parameters for the Stiffness and Strength Control of Artificially Cemented Sand”, journal of geotechnical and geoenvironmental engineering, asce, september, pp. 1347-1353.
-Correa-Silva, M., Miranda, T., Rouainia, M., Araújo, N., Glendinning, S. and Cristelo, N., (2020), “Geomechanical behaviour of a soft soil stabilised with alkali-activated blast-furnace slags”, No. 267, 10 September 2020, 122017. doi: https://doi.org/10.1016/j.jclepro.2020.122017.
-Currin, D. D., Allen, J. J., and Little, D. N., (1976), “Validation of soil stabilization index system with manual development.” Report No. FJSRL-TR-0006, Frank J. Seisler Research Laboratory, United States Air Force Academy, Colorado.
-Das, B. M., (1990), “Principle of foundation engineering”, PWS-KENT publishing company, Boston.
-Deluca, M. P. and Grassle, J. F., (1993), “Future alternatives via international port of New York and New Jersy”, pp.16-17.
-Do, T.M., Kang, G., Vu, N., and Kim, Y., (2018), “Development of a new cementless binder for marine dredged soil stabilization: Strength behavior, hydraulic resistance capacity, microstructural analysis, and environmental impact”, Construction and Building Materials 186, pp.263–275.
-Druijf, B., (2016), “The use of additives to Englishe dredged material”, M.Sc. Thesis, Delft University of Technology, the Wrocław University of Science and Technology, and the University of Miskolc.
-Dubois, V., Dubois, N.E., Zentar, Z. and Ballivy, G., (2009), “The use of marine sediments as a pavement base material”, Waste Management 29, pp. 774–782.
-Dunn, C.S. and Salem, M.N., (1971), “Influence of processing procedures on strength of sand stabilized with cationic bitumen emulsion”, Highway Res. Rec., 351, pp. 50-65.
-Eades, J. L. and Grim, R. E., (1966), “A quick test to determine lime requirements for lime stabilization.” Highway Research Record, Washington, D.C., 139, pp.61-75.
-Engineering manual 1110-3-137., (1984), “Soil stabilization for pavements mobilization construction”, Department of the Army, Corps of Engineers office of the chief of engineers.
-Eyo, E. U., Ng’ambi, S. and Abbey, S. J., (2020) “Incorporation of a nanotechnology-based additive in cementitious products for clay stabilisation”, Journal of Rock Mechanics and Geotechnical Engineering, No. 12, October 2020, pp. 1056-1069. doi: https://doi.org/10.1016/j.jrmge.2019.12.018.
-Eyo, E. U., Ng'ambi, S. and Abbey, S. J., (2020), “Performance of clay stabilized by cementitious materials and inclusion of zeolite/alkaline metals-based additive”, Transportation Geotechnics, No. 23, June, 100330. https://doi.org/10.1016/j.trgeo.2020.100330.
-Fatani, M.N. and Sultan, H.A., (1982), “Dune sand-aggregate mixes and dune sand-sulfur mixes for asphalt concrete pavements”, Transp. Res. Rec., 843, pp.72-79.
-Ghorbani, A. and Hasanzadehshooiili, H., (2018), “Prediction of UCS and CBR of microsilica-lime stabilized sulfate silty sand using ANN and EPR models; application to the deep soil mixing”, Soils and Foundations 58 (1), pp. 34-49. https://doi.org/10.1016/j.sandf.2017.11.002. 
-Gissila Gidday, B. and Mittal, S., (2020), “Improving the characteristics of dispersive subgrade soils using lime”, Heliyon, No. 6, February, e03384. doi: https://doi.org/10.1016/j.heliyon.2020.e03384.
-Hassanlourad, M., Salehzadeh, H. and Shahnazari, H., (2008), “Dilation and particle breakage effects on the shear strength of calcareous sands based on energy aspects”, International Journal of Civil Engineerng. Vol. 6, No. 2, pp. 108-119.
-Hassanlourad, M., Salehzadeh, H. and Shahnazari, H., (2014), “Drained Shear Strength of Carbonate Sands Based on Energy Approach”, International Journal of Geotechnical Engineering, Vol. 8, No. 1, pp. 1-9.
-Haston, J.S. and Wohlgemuth, S.K., (1985), “Experiences in the selection of the optimum lime content for soil stabilization.” Texas Civil Engineer, November 1985, pp.17-20.
-He, J., Shi, X. K., Li, Z. X., Zhang, L., Feng, X. Y. and Zhou, L. R., (2020), “Strength properties of dredged soil at high water content treated with soda residue, carbide slag, and ground granulated blast furnace slag”, Construction and Building Materials, No. 242, 10 May, 118126. doi:https://doi.org/10.1016/j.conbuildmat.2020.118126.
-Hendriks, H. C., 2016, “The effect of PH and the solids composition on the settling and self-weight consolidation of mud”, Delft: Delft University of Technology.
-Hillbrich, S. L., and Scullion, T., (2006), “A Rapid Alternative for Laboratory Determination of Resilient Modulus Input Values on Stabilized Materials for the AASHTO M-E Design Guide,” In Transportation Research Board 2006 Annual Meeting, CD-ROM Publication.
-Hilt, G.H. and Davidson, D.T., (1960), “Lime fixation in clayey soils”, Bulletin No. 304, Highway Research Record, Washington, D.C., pp.20-32.
-Horpibulsuk, S., Phojan, W., Suddeepong, A., Chinkulkijniwat, A., & Liu, M. D., (2012), “Strength development in blended cement admixed saline clay”, Applied Clay Science 55, pp.44-52.
-Hosseinpour, Z., Najafpour, G. D., Latifi, N., Morowvat, M.H. and Manahilohd, K. N., (2021), “Synthesis of a biopolymer via a novel strain of Pantoea as a soil stabilizer”, Transportation Geotechnics, Vol. 26, Jan. 2021, 100425. doi: https://doi.org/10.1016/j.trgeo.2020.100425.
-Huang, Y., Dong, C., Zhan, X. and Guan, Y., (2014), “Experimental Study on the Improvement of High Water Content Dredged Material by Cement and by Quicklime”, Advanced Materials Research, No. 878,
pp. 714-719.
-Igor, R., Irina, P., Eduard, P. and Maria, R., (2020), “The role of the composite modifier in the stabilization of the soil base”, Materials Today: Proceedings, Available online 10 September 2020 In Press, Corrected Proof. doi: https://doi.org/10.1016/j.matpr.2020.08.152.
-Ikeagwuani, C. C., Obeta, I. N. and Agunwamba, J. C., (2019), “Stabilization of black cotton soil subgrade using sawdust ash and lime”, Soils and Foundations, No. 59, February 2019, Pages 162-175. doi: https://doi.org/10.1016/j.sandf.2018.10.004.
-Indraratna, B. and Salim, W., (2002), “Modeling of Particle Breakage of Coarse Aggregate Incorporating Strength and Dilatancy”, Journal of Geotechnical Engineering, ICE, Vol. 155, No. 4, pp. 243-252.
-Ismail, M.A., Joer, H.A., Merit, A., and Randolph, M.F., 2002, “Cementation of Porous Material Using Calcite”, Geotechnique, Vol. 52, No. 5, pp. 313-324.
-James, J., (2020), “Sugarcane press mud modification of expansive soil stabilized at optimum lime content: Strength, mineralogy and microstructural investigation”, Journal of Rock Mechanics and Geotechnical Engineering, No. 12, April, pp. 395-402. doi: https://doi.org/10.1016/j.jrmge.2019.10.005.
-Jauberthie, R., Rendell, F., Rangeard, D. and Molez, L., 2010, “Stabilisation of estuarine silt with lime and/or cement”, Applied Clay Science 50, pp.395–400.
-Jitha, P. T., Sunil Kumar, B. and Raghunath, S., (2020), “Strength development and masonry properties of geopolymer stabilized soil-LPC (lime-pozzolana cement) mixes”, Construction and Building Materials, No. 250, 30 July, 118877, doi: https://doi.org/10.1016/j.conbuildmat.2020.118877.
-Kamon, M. and Nontananandh, S., (1991), “Combining industrial wastes with lime for soil stabilization”, Journal of Geotechnical Engineering, 117(1), pp.1-17.
-Kang, G., Aristo Cikmit, A., Tsuchida, T., Honda, H. and Kim, Y. S., (2019), “Strength development and microstructural characteristics of soft dredged clay stabilized with basic oxygen furnace steel slag”, Construction and Building Materials, No. 203, 10 April, pp. 501-513. doi: https://doi.org/10.1016/j.conbuildmat.2019.01.106.
-Kang, G., Tsuchida, T. and Kim, Y., (2017), “Strength and stiffness of cement-treated marine dredged clay at various curing stages”, Construction and Building Materials 132, pp. 71–84.
-Kang, G., Tsuchida, T., Tang, T.X. and Kalim, T.P., (2017), “Consistency measurement of cement-treated marine clay using fall cone test and Casagrande liquid limit test”, Soils and Foundations, 57 (5), pp. 802-814. https://doi.org/10.1016/j.sandf.2017.08.010
-Ketabi, H., Fahmi, A., Samadi Kafil, H. and Hajialilue Bonab, M., (2017), “Stabilization of calcareous sand dunes using phosphoric acid mulching liquid”, Journal of Arid Environments, 148, pp. 34-44. https://doi.org/10.1016/j.jaridenv.2017.09.011.
-Kim, D. and Siddiki, N.Z., (2006), “Simplification Of Resilient Modulus Testing For Subgrades”, Fhwa/In/Jtrp-2005/23, Final Report, Joint Transportation Research Program, Project No. C-36-52S, File No. 6-20-18, SPR- 2633, Indiana Department Of Transportation And The U.S. Department Of Transportation Federal Highway Administration, School Of Civil Engineering, Purdue University, February.
-Kim, D., and Siddiki, N., (2004), “Lime Kiln Dust and Lime – A Comparative Study in Indiana.” Transportation Research Board 2004 Annual Meeting, CD-ROM Publication, Paper No. 04-4147.
-Kitazume, M., & Satoh, T., (2003), “Development of a pneumatic flow mixing method and its application to Central Japan International Airport construction”, Ground Improvement, pp.139-148.
-Kotsewara Rao, D., Sravani, G. and Bharath, N., (2014), “A laboratory Study on the Affect of Steel Slag for Improving the Properties of Marine Clay for Foundation Beds”, International Journal of Scientific & Engineering Research, Volume 5, Issue 7, July.
-Lang, L., Li, F. and Chen, B., (2020), “Small-strain dynamic properties of silty clay stabilized by cement and fly ash”, Construction and Building Materials, No. 237, 20 March 2020, 117646. doi: https://doi.org/10.1016/j.conbuildmat.2019.117646.
-Lee, K. L. and Seed, H. B., (1967), “Drained Strength Characteristics of Sand”, Journal of Soil Mechanics and Foundations Division, ASCE, Vol. 93, No. SM6, pp. 117-141.
-Limeira, J., Agulló, L. and Etxeberria, M., (2012), “Dredged marine sand as construction material”, European Journal of Environmental and Civil Engineering Vol. 16, No. 8, September, pp.906–918.
-Little, D.L., (2000), “Evaluation of Structural Properties of Lime Stabilized Soils and Aggregates.” Mixture Design and Testing Protocol for Lime Stabilized Soils, 3, National Lime Association report, (http://www.lime.org/SOIL3.PDF).
-Little, L., Connor, B. and Carlson, R. F., (2005), “Tests of soil stabilization products, phase 1”, University of Alaska Fairbanks. 
Little, N.D. and Nair, S., (2009), “Recommended Practice for Stabilization of Subgrade Soils and Base Materials”, The National Academies Press, Nchrp Web-Only Document 144, Texas Transportation Institute, August.
-Liu, J., Bai, Y., Song, Z., Prasanna Kanungo, D., Wang, Y., Bu, F., Chen, Z. and Shi, X., (2020), “Stabilization of sand using different types of short fibers and organic polymer”, Construction and Building Materials, No. 253, 30 August 2020, 119164. doi: https://doi.org/10.1016/j.conbuildmat.2020.119164.
-Liu, L., Zhon, A., Deng, Y., Cui, Y., Yu, Z. and Yu, C., (2019), “Strength performance of cement/slag-based stabilized soft clays”, Construction and Building Materials, No. 211, 30 June, pp. 909-918. doi: https://doi.org/10.1016/j.conbuildmat.2019.03.256
-Liu, Y., Chang, M., Wang, Q., Wang, Y., Liu, J., Cao, C., Zheng, W., Bao, Y. and Rocchi, I., (2020), “Use of Sulfur-Free Lignin as a novel soil additive: A multi-scale experimental investigation”, Engineering Geology, No. 269, May, 105551. doi: https://doi.org/10.1016/j.enggeo.2020.105551.
-Lopez-Querol, S., Arias-Trujillo, J., GM-Elipe, M., Matias-Sanchez, A. and Cantero, B., (2017), “Improvement of the bearing capacity of confined and unconfined cement-stabilized English sand”, Construction and Building Materials 153, pp.374–384.
-Maher, M., Marshall, C., Harrison, F. and Baumgaertner, K., (2005), “Context sensitive roadway surfacing selection guide”, FHWA-CFL/TD-05-004.
-Mallela, J., Quintus, H. V., and Smith, K., (2004), “Consideration of lime-stabilized layers in mechanistic-empirical pavement design”, The National Lime Association.
-Manimaran, A., Santhosh, S. and Ravichandran, P.T., (2018), “characteristics study on sub grade soil blended with ground granulated blast furnace slag”, Rasayan J. Chem., Vol. 11, No. 1, pp. 401-404.
-McManis, K. L. and Arman, A., (1989), “Class C Fly Ash as a Full or Partial Replacement for Portland Cement or Lime.” Transportation Research Record, 1219, pp.68 – 81.
-Miller, G.A. and Azad, S., (2000), “Influence of soil type on stabilization with cement kiln dust.” Construction and Building Materials, 14, pp.89 – 97.
-Miller, G.A. and Zaman, M., (2000), “Field and laboratory evaluation of cement kiln dust as a soil stabilizer,” Transportation Research Record, 1714, Transportation Research Board, National Research Council, Washington D. C., pp.25-32
-Misra, A., (1998), “Stabilization Characteristics of Clays Using Class C Fly Ash.” Transportation Research Record, 1611, pp.46 – 54.
-Miura, N. and O-hara S., (1979), “Particle-crushing of a Decomposed Granite Soil under Shear Stress”, Soils and Foundations, Vol. 19, No. 3, pp. 1-14.
-MolaAbasi, H., Naderi Semsani, S., Saberian, M., Khajeh, A., Li, J. and Harandi, M., (2020), “Evaluation of the long-term performance of stabilized sandy soil using binary mixtures: A micro- and macro-level approach”, Journal of Cleaner Production, No. 267, 10 September, 122209. doi: https://doi.org/10.1016/j.jclepro.2020.122209.
-Motz, H. and Geiseler, J., (2001), “Products of steel slags an opportunity to save natural resources”, Waste Management. 21, pp. 285-293.
-Mozejko, C. A. and Francisca, F.M., (2020), “Enhanced mechanical behavior of compacted clayey silts stabilized by reusing steel slag”, Construction and Building Materials, No. 239, 10 April 2020, 117901. doi: https://doi.org/10.1016/j.conbuildmat.2019.117901.
-Muhammad, N. and Siddiqua, S., (2019), “Stabilization of silty sand using bentonite magnesium-alkalinization: Mechanical, physicochemical and microstructural characterization”, Applied Clay Science, No. 183, 15 December, 105325. doi: https://doi.org/10.1016/j.clay.2019.105325.
-Muhunthan, B. and Sariosseiri, F., (2008), “Interpretation of Geotechnical Properties of Cement Treated Soils”, The Federal Highway Administration U.S. Department of Transportation, July 2008, Research Report, FHWA Contract DTFH61-05-C-00008, Compaction Control of Marginal Soils in Fills.
-Murff, J.D., (1987), “Pile capacity in calcareous sands: State of the art”, J. Geotech. Eng. Div., ASCE, 113(GT5), pp. 490-507.
-Newland, P. L. and Allely, B. H., (1957), “Volume Changes in Drained Triaxial Tests on Granular Materials”, Geotechnique, Vol. 7, No. 1, pp. 17-34.
-Nicholson, P. G. and Ding, M., (1997), “Improvement of tropical soils with waste ash and lime.” American Society for Testing Materials, Vol. 1257, pp.195-204.
-Noorany, I., (1989), “Classification of Marine Sediments”, Journal of the Geotechnical Engineering Division, ASCE, Vol. 115, No. 1, pp. 23-37.
-Obianyo, I. I., Onwualu, A. P. and Soboyejo, B. O., (2020), “Mechanical behaviour of lateritic soil stabilized with bone ash and hydrated lime for sustainable building applications”, Case Studies in Construction Materials, No. 12, June 2020, e00331. doi: https://doi.org/10.1016/j.cscm.2020.e00331.
-Okumura, T., Noda, S., Kitazawa, S. and Wada, K., (2000), “New ground material made of dredged soil for port and airport reclamation projects”, Nakase and Tsuchida (eds) Coastal Geotechnical Engineering in Practice.
-Oluwatuyi, O. E., Ojuri, O. O. and Khoshghalb, A., (2020), “Cement-lime stabilization of crude oil contaminated kaolin clay”, Journal of Rock Mechanics and Geotechnical Engineering, No.12, February,
pp. 160-167. doi: https://doi.org/10.1016/j.jrmge.2019.07.010.
-Osinubi, K.J., and Nwaiwu, C.M.O., (2006), “Compaction delay effects on properties of lime-treated soil,” Journal of Materials in Civil Engineering, ASCE, Vol. 19, No.2, pp. 250-258.
-Parsons, R. L., and Milburn, J. P., (2003), “Engineering behavior of Stabilized Soils,” Transportation Research Record 1837, pp.20 – 29.
-Petry, T. M., and Little, D. N., (2002), “Review of Stabilization of Clays and Expansive Soils in Pavement and Lightly Loaded Structures-History, Practice and Future.” Journal of Materials in Civil Engineering, Vol. 14, No. 6.
-Phanikumar, B. R., Ramanjaneya Raju, E., (2020), “Compaction and strength characteristics of an expansive clay.
-Poh, H.Y., Ghataora, G.S. and Ghazireh, N., (2006), “Soil Stabilization Using Basic Oxygen Steel Slag Fines”, journal of materials in civil engineering, asce / march/april, pp. 229-240.
-Pooni, J., Robert, D., Giustozzi, F., Setunge, S., Xie, Y.M. and Xia, J., (2020), “Novel use of calcium sulfoaluminate (CSA) cement for treating problematic soils”, Construction and Building Materials, No. 260, 10 November 2020, 120433. doi: https://doi.org/10.1016/j.conbuildmat.2020.120433.
-Porbaha, A., Hanzawa, H. and Shima, M., (1999), “Technology of air-transported stabilized dredged fill. Part 1: pilot study”, Ground Improvement 3, pp. 49-58.
-Portland Cement Association, (1992), “Soil-Cement Laboratory Handbook.” Portland Cement Association, Illinois.
-Prabakar, J., Dndorkar, N. and Morchhale, R. K., (2004), “Influence of fly ash on strength behavior of typical soils,” Construction and Building Materials, 18, pp.263 – 267.
-Prusinski, J. R. and Bhattacharia, S., (1999). “Effectivenes of Portland cement and lime in stabilizing clay soils”, Transportation Research Record, 1632, pp.215 – 227.
-Puppala, A. J. and Musenda, C., (2000), “Effects of fibers reinforcement on strength and volume change behavior of expansive soils”, Transportation Research Board, Washington D.C., (1736), pp.134-140.
-Puppala, A. J., Punthutaecha, K. and Vanapalli, S. K., (2006), “Soil-Water Characteristic Curves of Stabilized Expansive Soils”, Journal of Geotechnical and GeoEnvironmental Engineering, 132 (6), pp. 736-751. doi: https://doi.org/10.1061/(ASCE)1090-0241(2006)132:6(736).
-Puppala, A.J., Mohammad, L.N. and Allen, A., (1996), “Engineering Behavior of Lime-Treated Louisiana Subgrade Soil”, transportation research record 1546, pp. 24-31.
-Qubain, B.S., Seksinsky, E.J. and Li, J., (2000), “Incorporating subgrade lime stabilization into Pavement Design”, Transportation Research Record 1721, Paper No. 00-0608, National Research Council, Washington D. C., pp. 3-8.
-Ramani Sujatha, E. and Saisree, S., (2019), “Geotechnical behaviour of guar gum-treated soil”, Soils and Foundations, No. 59, December, pp. 2155-2166. doi: https://doi.org/10.1016/j.sandf.2019.11.012.
-Rezaeimalek, S., Nasouri, A., Huang, J., Bin-Shafique, S., and T. Gilazghi, S., (2017), “Comparison of short-term and long-term performances for polymer-stabilized sand and clay”, journal of traffic and transportation engineering (nglish edition) , 4 (2) : pp.145 -155.
-Rezaeimalek,S., Huang, J. and Bin-Shafique, S., (2017), “Evaluation of curing method and mix design of a moisture activated polymer for sand stabilization”, Construction and Building Materials 146, pp.210–220.
-Rios, S., Viana da Fonseca, A. and Sagar Bangaru, S., (2016), “Silty Sand Stabilized with Different Binders”, Procedia Engineering, Vol. 143, pp. 187–195.
-Rivera, J. F., Orobio, A., Cristelo, N. and Mejía de Gutiérrez, R., (2020), “Fly ash-based geopolymer as A4 type soil stabilizer”, Transportation Geotechnics, No. 25, December, 100409. doi: https://doi.org/10.1016/j.trgeo.2020.100409.
-Rowe, P. W., (1962), “The Stress-Dilatancy Relation for Static Equilibrium of an Assembly of Particles in Contact, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences”, The Royal Society, Vol. 269, No. 1339.
-Sabbagh, A.O., (1988), “Design and viscoelastoplastic characterization of a lime-dune sand-asphalt mix”, Proc. 3rd IRF Middle East Reg. Meet., Riyadh, pp..175-177.
-Sabrin, S., Siddiqua, S. and Muhammad, N., (2019), “Understanding the effect of heat treatment on subgrade soil stabilized with bentonite and magnesium alkalinization”, Transportation Geotechnics, No. 21, December, 100287. doi: https://doi.org/10.1016/j.trgeo.2019.100287.
-Sai Nikhil, P., Ravichandran, P. T. and Divya Krishnan, K., (2020), “Stabilisation and characterisation of soil using wollastonite powder”, Materials Today: Proceedings, Available online 18 June 2020, In Press, Corrected Proof, doi: https://doi.org/10.1016/j.matpr.2020.05.489.
-Salimi, M. and Ghorbani, A., (2020), “Mechanical and compressibility characteristics of a soft clay stabilized by slag-based mixtures and geopolymers”, Applied Clay Science, No. 184, January 2020, 105390. doi: https://doi.org/10.1016/j.clay.2019.105390.
-Santoni, R. L. and Tingle, J. S., (2002), “Building roads on soft and silty soils”, www.almc.army.mil/alog/issues/JanFeb02/MS698.htm – 18k.
-Santoni, R. L., Tingle, J. S. and Nieves, M., (2004), “Accelerated strength improvement of silty sand using nontraditional additives”, 1936, Transportation Research Board, Washington, D.C., pp. 34-42.
-Seng, S. and Tanaka, H., (2011), “Properties of Cement-Treated Soils During Initial Curing Stages”, Soils and Foundations, Vol. 51, No. 5, pp. 775-784, Oct. 2011.
-Senol, A., Bin-Shafique, Md. S., Edil, T.B. and Benson, C.H., (2002), “Use of Class C Fly Ash for Stabilization of Soft Subgrade.” Fifth International Congress on Advances in Civil Engineering, Istanbul Technical University, Turkey.
-Shahnazari, H. and Rezvani, R., (2013), “Effective parameters for the particle breakage of calcareous sands: An experimental study”, Engineering Geology 159, pp. 98–105.
-Shahnazari, H., Salehzadeh, H., Rezvani, R., and Dehnavi, Y., (2014), “The effect of shape and stiffness of originally different marine soil grains on their contractive and dilative behavior”, KSCE Journal of Civil Engineering, 18(4), pp.975-983.
-Shinn, E.A., (1969), “Submarine lithification of Holocene carbonate sediments in the Persian Gulf. Sedimentology”, 12, pp.109-144.
-Shinsha, H. and Kumagai, T., (2018), “Material properties of solidified soil grains produced from dredged marine clay”, Soils and Foundations 58 (3), pp. 678-688.
-Siham, K., Fabrice, B., Vincent, D. and Nor Edine, A., (2013), “Beneficial use of marine dredged sand and sediments in road construction”, Arab J Sci Eng., pp. 1-8.
-Singh, G. V. and Das, B. M., (1999), “Soil stabilization with sodium chloride” Transportation Research Board, (1673), pp.46-55.
-Solanki, P., Khoury, N.N. and Zaman, M.M., (2009), “Engineering Properties of Stabilized Subgrade Soils for Implementation of the AASHTO 2002 Pavement Design Guide”, final report – fhwa-ok-08-10, odot spr item number 2185, June.
-Stabilised with Fly-ash Based Geopolymer Incorporating Ground Granulated Slag”, Transportation Geotechnics, (2020), Available online 2 September, 100430, In Press, Journal Pre-proof, doi: https://doi.org/10.1016/j.trgeo.2020.100430.
-Stabilised with lime sludge and cement”, Soils and Foundations, No. 60, February 2020, pp. 129–138. doi: https://doi.org/10.1016/j.sandf.2020.01.007.
-Sun, K., Nakano, M., Yamada, E. and Asaoka, A., (2010), “Mechanical Behavior of Compacted Geomaterial Changed from the Dredged Soil in Nagoya Port by Mixing with Some Stabilizers”, GeoShanghai 2010 International Conference, Ground Improvement and Geosynthetics. China.
-Taha Jawad, I., Taha, M.R., Majeed, Z.H. and Khan, T.A., (2014), “Soil Stabilization Using Lime: Advantages, Disadvantages and Proposing a Potential Alternative”, Research Journal of Applied Sciences, Engineering and Technology 8(4), pp.510-520.
-Taheri, A. and Tatsuoka, F., (2012), “Stress–strain relations of cement-mixed gravelly soil from multiple-step triaxial compression test results”, Soils and Foundations, 52(4), pp.748–766.
-Taheri, A., Sasaki, Y., Tatsuoka, F. and Watanabe, K., (2012), “Strength and deformation characteristics of cemented-mixed gravelly soil in multi- ple-step triaxial compression”, Soils and Foundations 52 (1), pp.151–170.
-Tang, Y.X., Miyazaki, Y. and Tsuchida, T., (2000), “Advanced reuses of dredging by cement treatment in practical engineering”, Nakase and Tsuchida (eds) Coastal Geotechnical Engineering in Practice.
-Tang, Y.X., Miyazaki, Y. and Tsuchida, T., (2001), “Practices of Reused Dredgins by Cement Treatment”, Soils and Foundations, Vol. 41, No. 5, pp. 129-143.
-Tasalloti, S.M.A., Indraratna, B., Chiaro, G. and Heitor, A., (2015), “Field investigation on compaction and strength performance of two coal wash-BOS slag mixtures”, In M. Iskander, M. T. Suleiman, J. Anderson & D. F. Laefer (Eds.), Geotechnical Special Publication, pp. 2359-2368.
-Taylor, D. W., (1948), “Fundamentals of Soil Mechanics”, John Wiley and Sons, New York.
-Thanh Hang Nguyen, T., Cui, Y-J., Ferber, V., Herrier, G., Ozturk, T., Plier, F., Puiatti, D., Salager, S. and Minh Tang, A., (2019), “Effect of freeze-thaw cycles on mechanical strength of lime-treated fine-grained soils”, Transportation Geotechnics, No. 21, December, 100281. doi: https://doi.org/10.1016/j.trgeo.2019.100281.
-Thomas, G. and Rangaswamy, K., (2020), “Dynamic soil properties of nanoparticles and bioenzyme treated soft clay”, Soil Dynamics and Earthquake Engineering, No. 137, October, 106324, pp. 1-10. doi: https://doi.org/10.1016/j.soildyn.2020.106324.
-U.S. Army Corps of Engineers, (2015), “Engineering and Design dredging and dredged material management”, manual no. em 1110-2-5025, department of the army, Washington, dc. 20314-1000, 31 July.
-Ueng, T. S., Tzou, Y. M. and Lee, C. J., (1988), “The Effect of End Resistant on Volume Change and Particle Breakage of Sands in Triaxial Tests”, Advanced Triaxial Testing of Soil and Rock, ASTM STP-977, pp. 679-691.
-Venda Oliveira, P. J. and Rosa, J. A. O., (2020), “Confined and unconfined behavior of a silty sand improved by the enzymatic biocementation method”, Transportation Geotechnics, No. 24, September, 100400, doi: https://doi.org/10.1016/j.trgeo.2020.100400.
-Wang, D., Zentar, R. and Abriak, N.E., (2011), “Strength and Swelling Properties of Solidified Dredged Materials”, Advanced Materials Research, Vols. 261-263, pp 812-815.
-Wang, F., Shen, Z., Liu, R., Zhang, Y., Xu, J. and Al-Tabbaa, A., (2020), “GMCs stabilized/solidified Pb/Zn contaminated soil under different curing temperature: Physical and microstructural properties”, Chemosphere, No. 239, January 2020, 124738. doi: https://doi.org/10.1016/j.chemosphere.2019.124738
-Watabe, Y., Noguchi, T., & Mitarai, Y., (2012), “Use of Cement-Treated Lightweight Soils Made from Dredged Clay”, Journal of ASTM International, pp.1-10.
-Watabe, Y., Saeguse, H., Shinsha, H., & Tsuchida, T., (2011), “Ten year follow-up study of airfoamtreated lightweight soil”, Ground improvement 164, pp.189-200.
-White, W. G. and Gnanendran, C. T., (2005), “The influence of compaction method and density on the strength and modulus of cementitiously stabilized pavement material.” The International Journal of Pavement Engineering, 6(2), pp.97-110.
-Yaghoubi, M., Arulrajah, A., Miri Disfani, M., Horpibulsuk, S., Darmawan, S. and Wang, J., (2019), “Impact of field conditions on the strength development of a geopolymer stabilized marine clay”, Applied Clay Science, January, (2019), pp. 33-42. doi: https://doi.org/10.1016/j.clay.2018.10.005.
-Yu, J., Chen, Y., Chen, G. and Wang, L., (2020), “Experimental study of the feasibility of using anhydrous sodium metasilicate as a geopolymer activator for soil stabilization”, Engineering Geology, No. 264, January 2020, 105316. doi: https://doi.org/10.1016/j.enggeo.2019.105316.
-Zaman, M., Laguros, J. G. and Sayah, A. I., (1992), “Soil stabilization using cement kiln dust,” Proceedings of 7th Int. Conf. on Expansive Soils, Dallas, Texas, pp.1 -5.
-Zeng, l. l., Bian, X., Zhao, L., Wang, Y. J. and Hong, Z-S., (2021), “Effect of phosphogypsum on physiochemical and mechanical behaviour of cement stabilized dredged soil from Fuzhou, China”, Geomechanics for Energy and the Environment, No. 25, March 2021, 100195. https://doi.org/10.1016/j.gete.2020.100195.
-Zhang, T., Liu, S., Zhan, H., Ma, C. and Cai, G., (2020), “Durability of silty soil stabilized with recycled lignin for sustainable engineering materials”, Journal of Cleaner Production, No. 248, 1 March 2020, 119293, doi: https://doi.org/10.1016/j.jclepro.2019.119293.
-Zhang, W. L., McCabe, B. A., Chen, Y. L. and Forkan, T. J., (2018), “Unsaturated behaviour of a stabilized marine sediment: A comparison of cement and GGBS binders”, Engineering Geology, No. 246, 28 November 2018, pp. 57-68. doi:10.1016/j.enggeo.2018.09.020.
-Zhang, X., Li, W., Tang, Z., Wang, X. and Sheng, D., (2020), “Sustainable regenerated binding materials (RBM) utilizing industrial solid wastes for soil and aggregate stabilization”, Journal of Cleaner Production, No. 275, 1 December 2020, 122991. doi: https://doi.org/10.1016/j.jclepro.2020.122991.
-Zhu, J. F., Xu, R. Q., Zhao, H. Y., Luo, Z. Y., Pan, B. J. and Rao, C. Y., (2020), “Fundamental mechanical behavior of CMMOSC-S-C composite stabilized marine soft clay”, Applied Clay Science,  No. 192,  July 2020, 105635. https://doi.org/10.1016/j.clay.2020.105635.
-Zia, N. and Fox, P.J., (2000), “Engineering Properties of Loess–Fly Ash Mixtures for Roadbase Construction”, Transportation Research Record 1714, Paper No. 00-0886, National Research Council, Washington D. C., pp 49-56.
-Ziaie Moayed, R., Khatami, S. M. H. and Allahyari, F., (2017), “Effect of Using Ion Exchange Solution in Increasing Bearing Capacity of Clayey Soils with Various Plasticity Index (PI)”, Amirkabir J. Civil Eng., 49(2), pp.305-311.