بررسی خرابی شیارشدگی در مخلوط‌های آسفالتی و راهکارهای بهبود آن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه راه و ترابری، دانشکده مهندسی عمران، دانشگاه علم و صنعت ایران، تهران، ایران

2 استاد، گروه راه و ترابری، دانشکده مهندسی عمران، دانشگاه علم و صنعت ایران، تهران، ایران

چکیده

در سال‌های اخیر با توجه به کاهش طول عمر خدمت‌دهی روسازی راه‌ها و افزایش چشمگیر هزینه‌های تعمیر و نگهداری، برای برآورده کردن نیازها از جمله حمل‌ونقل بدون تأخیر در حوزه محصولات تجاری و صنعتی، کاهش هزینه‌های تعمیر و نگهداری و همچنین ایمنی و کیفیت مناسب سواری، راه‌ها و روسازی آن‌ها مستلزم عملکرد بهتر و مقاوم‌تر در برابر خرابی‌های گوناگون از قبیل شیارشدگی، ترک خوردگی، عریان شدگی و ... می‌باشند. هرکدام از این خرابی‌ها با مکانیزم‌های مختلفی در روسازی ایجاد گردیده و عواملی از قبیل خصوصیات مخلوط آسفالتی، قیر، شرایط آب و هوایی و بارگذاری ترافیک باعث تشدید و توسعه این خرابی‌ها می‌گردد. در طی سالیان اخیر محققان و پژوهشگران روش‌ها و راهکارهای مختلفی برای بهبود عملکرد روسازی‌ها در برابر خرابی شیارشدگی ارائه کرده‌اند. در این تحقیق به بررسی و مقایسه رویکردهای مختلف جهت بهبود عملکرد روسازی آسفالتی در برابر خرابی شیار شدگی از قبیل اصلاح دانه‌بندی و بهبود قفل و بست سنگدانه‌ای، استفاده از مواد افزودنی و اصلاح‌کننده‌ها، به‌کارگیری سیستم‌های روسازی نیمه انعطاف‌پذیر و استفاده از تراشه‌های آسفالت بازیافتی پرداخته شد و مزیت و معایب هر روش نیز به تفصیل بیان گردید. در مجموع نتایج این بررسی و مقایسه نشان داد که استفاده از افزودنی‌ها و اصلاح‌کننده‌های مختلف و تراشه‌های آسفالت بازیافتی تحت شرایط ویژه و کنترل‌شده می‌تواند باعث بهبود عملکرد روسازی در برابر خرابی شیارشدگی گردند.

کلیدواژه‌ها


-Alimohammadi, H., Schaefer, V. R., Zheng, J., & Li, H., (2021), “Performance evaluation of geosynthetic reinforced flexible pavement: a review of full-scale field studies”, International Journal of Pavement Research and Technology, 14(1), pp.30-42.
 
-Al-Qadi, I. L., Elseifi, M., & Carpenter, S. H. (2007), “Reclaimed asphalt pavement—a literature review”, FHWA-ICT-07-001.
-Ameli, A., Babagoli, R., & Aghapour, M., (2016), “Laboratory evaluation of the effect of reclaimed asphalt pavement on rutting performance of rubberized asphalt mixtures”, Petroleum Science and Technology, 34(5), pp.449-453.
-Amin, M. N., Khan, M. I., & Saleem, M. U., (2016), “Performance evaluation of asphalt modified with municipal wastes for sustainable pavement construction”, Sustainability, 8(10),
pp. 949-950.
-Arabani, M., & Shabani, A., (2019), “Evaluation of the ceramic fiber modified asphalt binder”, Construction and Building Materials, 205, pp.377-386.
-Ayar, P., Baradaran, S., Abdipour Vosta, S. (2022), “A Review on the Effect of Various Additives on Mechanical Properties of Stone Mastic Asphalt (SMA)”, Road, 30(110),
pp.57-86.
Doi: 10.22034/road.2021.295635.1969.
-Bahia, H., (2006), “Modified asphalt binders for paving applications”.
-Behbahani, H., Najafi Moghaddam Gilani, V., Salehfard, R., & Safari, D., (2020), “Evaluation of fatigue and rutting behaviour of hot mix asphalt containing rock wool”, International Journal of Civil Engineering, 18, pp.1293-1300.
-Bharath, G., Shukla, M., Nagabushana, M. N., Chandra, S., & Shaw, A., (2020), “Laboratory and field evaluation of cement grouted bituminous mixes”, Road Materials and Pavement Design, 21(6), pp.1694-1712.
 
-Brown, E. R., Haddock, J. E., Mallick, R. B., & Lynn, T. A., (1997), “Development of a mixture designs procedure for stone matrix asphalt”.
 
-Brown, E., Mallick, R. B., Haddock, J. E., & Bukowski, J., (1997), “Performance of stone matrix asphalts (SMA) mixtures in the United States (No. Report No: NCAT Report No. 97-1)”, National Center for Asphalt Technology.
-Brown, S. F., (2009), “An assessment of geogrid use in railways and asphalt applications”, In Proceedings of Jubilee Symposium on Polymer Geogrid Reinforcement.
-Button, J. W., Perdomo, D., & Lytton, R. L., (1990), “Influence of aggregate on rutting in asphalt concrete pavements”, Transportation Research Record, (1259).
 
-Cancelli, A., & Montanelli, F., (1999), “In-ground test for geosynthetic reinforced flexible paved roads Vol. 2.
-Chegenizadeh, A., Tokoni, L., Nikraz, H., & Dadras, E., (2021), “Effect of ethylene-vinyl acetate (EVA) on stone mastic asphalt (SMA) behavior”, Construction and Building Materials, 272, pp.121628.
-Chen, J. S., & Wei, S. H., (2016), “Engineering properties and performance of asphalt mixtures incorporating steel slag”, Construction and Building Materials, 128, pp.148-153.
-Cheng, Y., & Qin, Y., (2019), “Aggregates breakage introduction to optimize gradation of
multi-supporting skeleton asphalt mixtures”, Construction and Building Materials, 200,
pp.265-271.
-Coleri, E., Harvey, J. T., Yang, K., & Boone, J. M., (2013), “Investigation of asphalt concrete rutting mechanisms by X-ray computed tomography imaging and micromechanical finite element modeling”, Materials and structures, 46(6), pp.1027-1043.
-Du, Y., Chen, J., Han, Z., & Liu, W., (2018), “A review on solutions for improving rutting resistance of asphalt pavement and test methods”, Construction and Building Materials, 168,
pp.893-905.
-Faruk, A. N., Lee, S. I., Zhang, J., Naik, B., & Walubita, L. F., (2015), “Measurement of HMA shear resistance potential in the lab: The Simple Punching Shear Test”, Construction and Building Materials, 99, pp.62-72.
-Golalipour, A., Jamshidi, E., Niazi, Y., Afsharikia, Z., & Khadem, M., (2012), “Effect of aggregate gradation on rutting of asphalt pavements”, Procedia-Social and Behavioral Sciences, 53, pp.440-449.
-Guo, R., & Nian, T., (2020), “Analysis of factors that influence anti-rutting performance of asphalt pavement”, Construction and Building Materials, 254, 119237.
-Hajikarimi, P., Rahi, M., & Moghadas Nejad, F., (2015), “Comparing different rutting specification parameters using high temperature characteristics of rubber-modified asphalt binders”, Road Materials and Pavement Design, 16(4), pp.751-766.
-Hamedi, G. H., Shamami, K. G., & Pakenari, M. M., (2020), “Effect of ultra-high-molecular-weight polyethylene on the performance characteristics of hot mix asphalt”, Construction and Building Materials, 258, 119729.
-Hammoum, F., Chabot, A., St-Laurent, D., Chollet, H., & Vulturescu, B., (2010), “Effects of accelerating and decelerating tramway loads on bituminous pavement”, Materials and Structures, 43(9), pp.1257-1269.
-Hasan, M., & Sugiarto, S., (2021), “Determining the properties of semi-flexible pavement using waste tire rubber powder and natural zeolite, Construction and Building Materials, 266, 121199.
-Hassani, A., Taghipoor, M., & Karimi, M. M., (2020), “A state of the art of semi-flexible pavements: Introduction, design, and performance”, Construction and Building Materials, 253, 119196.
-Iran Ministry of Road and Transportation, (2009), “Effect of Gradation Type and Void in Asphalt Concrete on Rutting and Bleeding in Iran Roads”, 1st Ed., Transportation Research Institute (TRI).
-Ismael, M. Q., Fattah, M. Y., & Jasim, A. F., (2021), “Improving the rutting resistance of asphalt pavement modified with the carbon nanotubes additive”, Ain Shams Engineering Journal.
-Kandhal, P. S., & Mallick, R. B., (2001), “Effect of mix gradation on rutting potential of dense-graded asphalt mixtures”, Transportation Research Record, 1767(1), pp.146-151.
-Karahancer, S., (2020), “Effect of aluminum oxide nano particle on modified bitumen and hot mix asphalt”, Petroleum Science and Technology, 38(13), pp.773-784.
-Kathari, P. M., (2016), “Rheological properties of polypropylene reinforced asphalt binder”, Transportation Infrastructure Geotechnology, 3(3), pp.109-126.
-Kathari, P. M., Sandra, A. K., & Sravana, P., (2018), “Experimental investigation on the performance of asphalt binders reinforced with basalt fibers”, Innovative Infrastructure Solutions, 3(1), pp.1-9.
-Kennedy, T. W., Tam, W. O., & Solaimanian, M., (1998), “Optimizing use of reclaimed asphalt pavement with the Superpave system”, Journal of the Association of Asphalt Paving Technologists, 67.
-Klinsky, L. M. G., Kaloush, K. E., Faria, V. C., & Bardini, V. S. S., (2018), “Performance characteristics of fiber modified hot mix asphalt”, Construction and Building Materials, 176, pp.747-752.
-Li, L., Huang, X., Han, D., Dong, M., & Zhu, D., (2015), “Investigation of rutting behavior of asphalt pavement in long and steep section of mountainous highway with overloading”, Construction and Building Materials, 93, pp.635-643.
-Li, L., Huang, X., Wang, L., & Li, C., (2013), “Integrated experimental and numerical study on permanent deformation of asphalt pavement at intersections”, Journal of materials in civil engineering, 25(7), pp.907-912.
-Li, Y., Hao, P., Zhao, C., Ling, J., Wu, T., Li, D. & Sun, B., (2021), “Anti-rutting performance evaluation of modified asphalt binders: a review”, Journal of Traffic and Transportation Engineering (English Edition).
-Liu, S., Cao, W., Fang, J., & Shang, S., (2009), “Variance analysis and performance evaluation of different crumb rubber modified (CRM) asphalt”, Construction and Building Materials, 23(7), pp.2701-2708.
-Lv, Q., Huang, W., Zheng, M., Sadek, H., Zhang, Y., & Yan, C., (2020), Influence of gradation on asphalt mix rutting resistance measured by Hamburg Wheel Tracking test, Construction and Building Materials, 238, 117674.
-Management and Planning Organization, (2016), "Instruction for design and implementation of coarse grained asphalt mixtures", Criterion No. 706, Management and Planning Organization of the country, Transportation Research Institute.
(in Persian)
-‌Miller,‌ J.‌S., & Bellinger, W. Y., (2003), “Distress identification manual for the long-term pavement performance program (No. FHWA-RD-03-031)”. United States, Federal Highway Administration. Office of Infrastructure Research and Development.
-Mirhosseini, A. F., Tahami, S. A., Hoff, I., Dessouky, S., & Ho, C. H., (2019), “Performance evaluation of asphalt mixtures containing high-RAP binder content and bio-oil rejuvenator”, Construction and Building Materials, 227, 116465.
-Moghaddam, T. B., Soltani, M., & Karim, M. R., (2014), “Experimental characterization of rutting performance of polyethylene terephthalate modified asphalt mixtures under static and dynamic loads”, Construction and Building Materials, 65, pp.487-494.
-Morea, F., Agnusdei, J. O., & Zerbino, R., (2011), “The use of asphalt low shear viscosity to predict permanent deformation performance of asphalt concrete. Materials and structures”, 44(7), pp.1241-1248.
 
 
 
-Otto, F., Liu, P., Zhang, Z., Wang, D., & Oeser, M., (2018), “Influence of temperature on the cracking behavior of asphalt base courses with structural weaknesses”, International Journal of Transportation Science and Technology, 7(3), pp.208-216.
-Panda, M., Suchismita, A., & Giri, J., (2013), “Utilization of ripe coconut fiber in stone matrix asphalt mixes”, International Journal of Transportation Science and Technology, 2(4), pp.289-302.
-Park, B., Zou, J., Yan, Y., Roque, R., Lopp, G., & Moseley, H., (2021), “Effect of reclaimed asphalt pavement on cracking performance of asphalt mixtures with regular and high polymer modified binders”, Road Materials and Pavement Design, 1-13.
-Polaczyk, P., Ma, Y., Xiao, R., Hu, W., Jiang, X., & Huang, B., (2021), “Characterization of aggregate interlocking in hot mix asphalt by mechanistic performance tests”, Road Materials and Pavement Design, 22 (sup1), S498-S513.
-Qadir, A., & Gazder, U., (2021), “Statistical analysis for comparing and predicting rutting resistance of asphalt pavements with rigid and flexible geogrid layers”, Construction and Building Materials, 302, 124136.
-Qian, C., Fan, W., Yang, G., Han, L., Xing, B., & Lv, X., (2020), “Influence of crumb rubber particle size and SBS structure on properties of CR/SBS composite modified asphalt”, Construction and Building Materials, 235, 117517.
-Saedi, S., & Oruc, S., (2020), “The influence of SBS”, viatop premium and FRP on the improvement of stone mastic asphalt performance. Fibers, 8(4), 20.
-Saltan, M., Terzi, S., & Karahancer, S., (2017), “Examination of hot mix asphalt and binder performance modified with nano silica”, Construction and Building Materials, 156,
pp.976-984.
-Sengul, C. E., Oruc, S., Iskender, E., & Aksoy, A., (2013), “Evaluation of SBS modified stone mastic asphalt pavement performance”, Construction and Building Materials, 41, pp.777-783.
          -Sharma, D. K., Swami, B. L., & Vyas, A. K., (2021), “Performance evaluation of hot mix asphalt containing copper slag” Materials Today: Proceedings, 38, pp.1241-1244.
 
 
-Sousa, J. B., Harvey, J., Painter, L., Deacon, J. A., & Monismith, C. L., (1991), “Evaluation of laboratory procedures for comapcting asphalt-aggregate mixtures, (No. SHRP-A/UWP-91-523).
-Taherkhani, H., and Khebreh, A., (2017), “Investigation of grooves and top-down cracks in composite pavements made with roller concrete using finite element method”, Transportation Engineering, 9 (Special Issue), pp.69-88. (in Persian).
-Tashman, L. S., Masad, E., Peterson, B., & Saleh, H., (2000), “Internal structure analysis of asphalt mixes to improve the simulation of superpave gyratory compaction to field conditions (Master's thesis, Washington State University)”.
-Tian, Y., Lee, J., Nantung, T., & Haddock, J. E., (2017), “Development of a mid-depth profile monitoring system for accelerated pavement testing”, Construction and Building Materials, 140, pp.1-9.
-Wang, G., Roque, R., & Morian, D., (2012), “Effects of surface rutting on near-surface pavement responses based on a two-dimensional axle-tire-pavement interaction finite-element model’, Journal of Materials in Civil Engineering, 24(11), pp.1388-1395.
-Wang, H., & Al-Qadi, I. L., (2010), “Evaluation of surface-related pavement damage due to tire braking”, Road Materials and Pavement Design, 11(1), pp.101-121.
-Witczak, M. W., (2007), “Specification criteria for simple performance tests for rutting, Vol. 580, Transportation Research Board.
-Xu, O., Xiao, F., Han, S., Amirkhanian, S. N., & Wang, Z., (2016), “High temperature rheological properties of crumb rubber modified asphalt binders with various modifiers”, Construction and Building Materials, 112, pp.49-58.
-Xue, Y., Wu, S., Hou, H., & Zha, J., (2006), “Experimental investigation of basic oxygen furnace slag used as aggregate in asphalt mixture”, Journal of hazardous materials, 138(2), pp.261-268.
-Zhang, H., Liang, S., Ma, Y., & Fu, X., (2019), “Study on the mechanical performance and application of the composite cement–asphalt mixture”, International Journal of Pavement Engineering, 20(1), pp.44-52.
-Zhang, L., Xing, C., Gao., F., Li, T. S., & Tan, Y. Q., (2016), “Using DSR and MSCR tests to characterize high temperature performance of different rubber modified asphalt”, Construction and Building Materials, 127, pp.466-474.
-Zhang, P., Li, H., Yin, N., & Ma, D., (2016), “Pavement performance evaluation and creep properties study on asphalt mixture modified by anti-rutting agent PCF”, In Functional Pavement Design, CRC Press, pp. 645-654.
-Zhang, W., Shen, S., Wu, S., & Mohammad, L. N., (2017), “Prediction model for field rut depth of asphalt pavement based on Hamburg wheel tracking test properties”, Journal of Materials in Civil Engineering, 29(9), 04017098.
-Ziari, H., Moniri, A., & Norouzi, N., (2019), “The effect of nanoclay as bitumen modifier on rutting performance of asphalt mixtures containing high content of rejuvenated reclaimed asphalt pavement”, Petroleum Science and Technology, 37(17),
pp.1946-1951.
-Ziari, H., Nasiri, E., Amini, A., & Ferdosian, O., (2019), “The effect of EAF dust and waste PVC on moisture sensitivity, rutting resistance, and fatigue performance of asphalt binders and mixtures”, Construction and Building Materials, 203, pp.188-200.