بررسی آزمایشگاهی بهسازی بستر راه با استفاده از الیاف لاستیک، زئولیت، سیمان و آهک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه عمران، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران

2 گروه عمران، واحد گنبد کاووس، دانشگاه آزاد اسلامی، گنبد کاووس، ایران

3 گروه عمران، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران

چکیده

با توجه به اهمیت بسیار زیاد ایجاد راه‌ها در این مناطق ساحلی در اقتصاد و شاه‌راه‌های مواسلاتی بین شهرهای شرقی و غربی، این نوع خاک‌ها نیازمند بهسازی هستند. یکی از روش‌های مرسوم جهت بهبود خواص مکانیکی خاک‌ها استفاده از تثبیت کننده‌هایی مثل آهک و سیمان است. روش دیگری که در سال‌های اخیر از آن بهره گرفته شده، استفاده از الیاف مصنوعی یا طبیعی برای تقویت خاک‌ها بوده است. با توجه به مشکلات زیست محیطی ایجاد شده توسط تثبیت کننده‌های مرسوم (سیمان/آهک) و نیز هزینه‌های اقتصادی آن، استفاده از پوزولان که دارای هزینه تمام شده کمتر است به عنوان جایگزین این مواد می‌تواند راهکار مناسبی باشد. با توجه به اهمیت موضوع در زمینه بهسازی، در این تحقیق تاثیر دو نوع افزودنی پوزولانی (زئولیت) و الیاف لاستیک بر روی مقاومت فشاری نمونه‌های ماسه‌ای تثبیت شده با سیمان و آهک با استفاده از آزمایش تک محوری مورد بررسی قرار گرفته است. نتایج آزمایش‌ها نشان دهنده اثرات موثرتر سیمان نسبت به آهک در افزایش مقاومت فشاری خاک بوده است. نسبت مقاومت فشاری نمونه‌های سیمانی به نمونه‌های آهکی در حدود 650 درصد است. همچنین نمونه‌های آهکی الیافی و نیز نمونه‌های سیمانی الیافی نسبت به حالت نمونه‌های سیمانی و آهکی بدون الیاف دارای افزایش مقاومت فشاری به ترتیب تا حدود 50 و 110 درصد است. جایگزینی سیمان و آهک با زئولیت تغییری در مقاومت فشاری از خود نشان نمی‌دهد که این موضوع از منظر اقتصادی و محیط زیستی بیانگر رفتار مناسب‌تری دارد.

کلیدواژه‌ها


-هادی‌زاده.ح. و قاسمی. م.، (1399)، "ارزیابی و مقایسه تاثیر ضایعات کیسه پلیمری و تایر فرسوده بر خصوصیات مقاومتی ماسه رس‌دار تثبیت شده با سیمان"، جاده، 28 (105)،  صص.69-92.
-صادق‌پور منفرد. م. رحمانی. ا، و آقایی آرایی. ع.، (1400)، "روش‌های گوناگون تثبیت خاک لایروبی و کربناته"، جاده، 29(106)، صص. 42-11.
-احمدی، م. حسنی. آ. و سلیمانی کرمانی. م.ر.، (1394)، "نقش الیاف فلزی بازیافتی از لاستیک خودرو بر بتن حاوی سنگ‌دانه‌های بازیافتی ناشی از نخاله‌های ساختمانی"، تحقیقات بتن، 7 (2)، صص. 68-57.
-صمدیان. م.، (1385)، "گزارش بازیافـت لاسـتیک"، وزارت صـنایع و معادن، معاونت امور تولید.
-ملکی. ع. رمضانیان‌پور. ا. م. و محمودزاده کنی. ا.، (1401)، "بررسی عملکرد مکانیکی و دوامی بتن خودتراکم حاوی سیمان آمیخته چند پوزولانی"، مهندسی عمران مدرس, 22(5).‎
-رنگرزیان. م. مدندوست. ر. محجوب. ر. رفتاری. م.، (1401)، "بررسی تجربی خواص مهندسی بتن پوزولانی تقویت شده با الیاف و ارزیابی اثر ضربه برآن: مطالعه موردی پوزولان معدنی محلی"، مهندسی سازه و ساخت.‎
-Afrakoti, M. T. P., Choobbasti, A. J., Ghadakpour, M., & Kutanaei, S. S., (2020), "Investigation of the effect of the coal wastes on the mechanical properties of the cement-treated sandy soil. Construction and Building Materials", 239, 117848.­
-Asgari, M., Baghebanzadeh Dezfuli, A., & Bayat, M., (2015), "Experimental study on stabilization of a low plasticity clayey soil with cement/lime", Arabian Journal of Geosciences, 8(3), 1439-1452.
-Bhattacharya, S., Hyodo, M., Goda, K., Tazoh, T., & Taylor, C., (2011), "Liquefaction of soil in the Tokyo Bay area from the 2011 Tohoku (Japan) earthquake", Soil Dynamics and Earthquake Engineering, 31(11), pp.1618-1628.
-Bildirici, M. E., (2019), "Cement production, environmental pollution, and economic growth: evidence from China and USA", Clean Technologies and Environmental Policy, 21(4), pp.783-793.
-Chen, W., Hong, J., & Xu, C., (2015), "Pollutants generated by cement production in China", their impacts, and the potential for environmental improvement. Journal of Cleaner Production, 1, pp.63-69.
-Chenarboni, H. A., Lajevardi, S. H., MolaAbasi, H., & Zeighami, E., (2021), "The effect of zeolite and cement stabilization on the mechanical behavior of expansive soils", Construction and Building Materials, 272, 121630.
-Chu, J., Yan, S., & Zheng, Y., (2006), "Three soil improvement methods and their applications to road construction", Proceedings of the Institution of Civil Engineers-Ground Improvement, 10(3), pp.103-112.
-Davoodi, A., Esfahani, M. A., Bayat, M., & Mohammadyan-Yasouj, S. E., (2021), "Evaluation of performance parameters of cement mortar in semi-flexible pavement using rubber powder and nano silica additives", Construction and Building Materials, 302, 124166.
-Eshaghzadeh, M., Bayat, M., Ajalloeian, R., & Hejazi, S. M., (2021), "Mechanical behavior of silty sand reinforced with nanosilica-coated ceramic fibers", Journal of Adhesion Science and Technology, 35(23), pp.2664-2683.
-Gray, D. H., & Ohashi, H., (1983), "Mechanics of fiber reinforcement in sand. Journal of geotechnical engineering, 109, pp.335-365.
-Hadi Sahlabadi, S., Bayat, M., Mousivand, M., & Saadat, M., (2021), "Freeze–thaw durability of cement-stabilized soil reinforced with polypropylene/basalt fibers", Journal of Materials in Civil Engineering, 33(9), 04021232.
-Hausler, E. A., & Sitar, N., (2001), "Performance of soil improvement techniques in earthquakes", 4th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, San Diego, USA.
-Hejazi, S. M., Sheikhzadeh, M., Abtahi, S. M., & Zadhoush, A., (2012), "A simple review of soil reinforcement by using natural and synthetic fibers", Construction and Building Materials, 30, pp.100-116.
Houston, S. L., Houston, W. N., Zapata, C. E., & Lawrence, C., (2001), "Geotechnical engineering practice for collapsible soils", In Unsaturated soil concepts and their application in geotechnical practice, Springer, pp. 333-355.
-Jaritngam, S., (2003), "Design concept of the soil improvement for road construction on soft clay", Proceedings of the eastern Asia society for transportation studies.
-Jewell, R., & Wroth, C., (1987), "Direct shear tests on reinforced sand", Geotechnique, 37(1), pp.53-68.
-Kamruzzaman, A., Chew, S., & Lee, F., (2009), "Structuration and destructuration behavior of cement-treated Singapore marine clay", Journal of geotechnical and geoenvironmental engineering, 135(4), pp.573-589.
-Li, C., & Zornberg, J. G., (2013), "Mobilization of reinforcement forces in fiber-reinforced soil", Journal of geotechnical and geoenvironmental engineering, 139(1), pp.107-115.
-Michalowski, R. L., & Zhao, A., (1996), "Failure of fiber-reinforced granular soils", Journal of geotechnical engineering, 122(3), pp.226-234.
-Mohammadi, S. D., (2015), "The study of workability of lime on improvement of oil materials contaminated soils around the Tabriz oil refinery", Modares Civil Engineering journal, 15, pp.223-234.
-Nicholson, P. G., (2014), "Soil improvement and ground modification methods", Butterworth-Heinemann".
-Palmeira, E. M., & Milligan, G. W., (1989), "Large scale direct shear tests on reinforced soil", Soils and foundations, 29(1), pp.18-30.
-Saadat, M., & Bayat, M., (2022), "Prediction of the unconfined compressive strength of stabilised soil by Adaptive Neuro Fuzzy Inference System (ANFIS) and Non-Linear Regression (NLR)", Geomechanics and Geoengineering, 17(1), pp.80-91.
-Salehi, M., Bayat, M., Saadat, M., & Nasri, M., (2021), "Experimental study on mechanical properties of cement-stabilized soil blended with crushed stone waste", KSCE Journal of Civil Engineering, 25(6), pp.1974-1984.
-Sanches, G. M., Magalhães, P. S., Remacre, A. Z., & Franco, H. C., (2018), "Potential of apparent soil electrical conductivity to describe the soil pH and improve lime application in a clayey soil. Soil and Tillage Research", 175, pp.217-225.
-Saride, S., Puppala, A. J., & Chikyala, S. R., (2013), "Swell-shrink and strength behaviors of lime and cement stabilized expansive organic clays", Applied Clay Science, 85, pp.39-45.
-Seiphoori, A., & Zamanian, M., (2022), "Improving mechanical behaviour of collapsible soils by grouting clay nanoparticles. Engineering Geology", 298, 106538.
Tang, C., Shi, B., Gao, W., Chen, F., & Cai, Y., (2007), "Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil", Geotextiles and Geomembranes, 25(3), pp.194-202.
-Van Impe, W. F., (1989), "Soil improvement techniques and their evolution".
-Wei, X., & Ku, T., (2020), "New design chart for geotechnical ground improvement: characterizing cement-stabilized sand", Acta Geotechnica, 15(4), pp.999-1011.
-Wong, J. K. H., Kok, S. T., & Wong, S. Y., (2020), "Cementitious, pozzolanic and filler materials for DSM binders", Civ. Eng. J, 6(2), pp.402-417.
-Worrell, E., Price, L., Martin, N., Hendriks, C., & Meida, L. O., (2001), "Carbon dioxide emissions from the global cement industry", Annual review of energy and the environment, 26(1), pp.303-329.
-Xiao, H., Lee, F., Zhang, M., & Yeoh, S., (2013), "Fiber reinforced cement treated clay. Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering.
M.N. James, W. Choi, T. Abu-Lebdeh, (2011), "use of recycledaggregate and fly ash in concrete pavement", American Journal of Engineering and Applied Sciences, Vol. 2 , No. 4, pp.201-208.