Automatic Recognition and Classification of Asphalt Pavement Distress Texture Based on Wavelet Transform

Document Type : Original Article

Authors

1 M.Sc., Grad., Civil Engineering Department, Ferdowsi University of Mashhad, Mashhad, Iran.

2 Assistant Professor, Civil Engineering Department, Ferdowsi University of Mashhad, Mashhad, Iran.

10.22034/road.2021.64977

Abstract

Inspection of the pavement distresses is one of the most prominent phases of pavement management process in regard with determining optimum pavement maintenance strategies. Over the past few decades, a considerable number of efforts have been carried out on developing automatic methods for objectively distress detection all of which rely on machine vision and image processing techniques. One of the most important assets comprising machine vision systems is the feature extraction process. In the past few years, multi-resolutional analysis approaches, namely wavelet transforms has provided a great tool for fast and accurate image texture representation. In the present study, after acquisition of six different types of asphalt pavement distresses under controlled condition, in order to identify and categorize them, four 2-D multi-resolution transforms including Haar discrete wavelet, Daubechies3 discrete wavelet, Coiflet1 discrete wavelet and dual-tree complex wavelet were utilized. After decomposition of the distress images by applying the aforementioned transforms, first-order statistical indices based on histogram and second-order statistics based on gray level co-occurrence matrix were employed, in order to describe the wavelet frequency sub-bands texture. The distress classification results based on minimum Mahalanobis distance classifier indicate that extracting second-order statistics from the sub-bands of the dual-tree complex wavelet and Haar discrete wavelet transforms, yielding classification accuracy of 99% and 95% respectively, outperform other feature extraction algorithms in distress recognition. Furthermore, statistical indices acquired from gray level co-occurrence matrix with average classification rate of 87%, obtained superior performance in distress images discrimination compared to histogram statistics.

Keywords


-شهابیان مقدم، ر.، (1396)، "تشخیص و طبقه­بندی خودکار خرابی­های روسازی آسفالتی بر پایه آنالیز بافت تصویر در حوزه مکان و تبدیل"، پایان­نامه کارشناسی ارشد، اساتید راهنما: سیدعلی صحاف و ابوالفضل محمدزاده مقدم، دانشکده مهندسی، دانشگاه فردوسی مشهد، مشهد، ایران.
-شهابیان مقدم، ر.، صحاف، س.ع، محمدزاده مقدم، ا. و پوررضا، ح.ر.، (1396)، "مقایسه روش­های آنالیز بافت تصویر به منظور شناسایی و طبقه بندی خودکار خرابی‏های روسازی آسفالتی" ، فصلنامه مهندسی زیر ساخت های حمل و نقل، دوره سوم، شماره سوم، ص. 1-22.
-سمنارشاد، مح.س. کاووسی، ا. و صفارزاده، م.، (1396)،
"­ارائه مدل نگهداری و بهسازی شبکه راه‌های اصلی با به کارگیری تحلیل هزینه چرخه عمر -مطالعه موردی استان خراسان جنوبی"، فصلنامه مهندسی حمل و نقل، دوره نهم، شماره دوم، ص. 209-230.
-Aggarawal, N. and Agrawal, R. K., (2012), “First and second order statistics features for classification of magnetic resonance brain images”, Journal of Signal and Information Processing, No. 3, pp. 146-153.
-Cheng, H. D., Glazier, C. and Hu, Y. G., (1999), “Novel approach to pavement cracking detection based on fuzzy set theory”, Journal of Computing in Civil Engineering, Vol. 13, No. 3, pp. 270-280.
-Chua, K. M. and Xu, L., (1994), “Simple procedure for identifying pavement distresses from video images”, Journal of Transportation Engineering, Vol. 120, No. 3, pp. 412-431.
-Dettori, L. and Semlera, L., (2007), “A comparison of wavelet, ridgelet, and curvelet based texture classification algorithms in computed tomography”, Computers in Biology and Medicine, Vol. 37, No. 4, pp. 486-498.
-Kingsbury, N. G., (1998), “The dual-tree complex wavelet transform: a new technique for shift invariance and directional filters”, Proceedings of the IEEE Digital Signal Processing Workshop, No. 98, pp. 9-12.
-Lee, D., (2003), “A robust position invariant artificial neural network for digital Pavement crack analysis”, Technical report, TRB Annual Meeting, 2009, Washington, DC, USA.
-Mallat, S., (1989), “A theory for multiresolution signal decomposition: the wavelet representation”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 11,
No. 7, pp. 674-693 .
-Moghadas Nejad, F. and Zakeri, H., (2011), “An optimum feature extraction method based on Wavelet–Radon Transform and Dynamic Neural Network for pavement distress classification”, Expert Systems with Applications,Vol. 38, No. 3, pp. 9442-9460.
-Moghadas Nejad, F. and Zakeri, H., (2011), “A comparison of multi-resolution methods for detection and isolation of pavement distress”, Expert Systems with Applications, Vol. 38, No. 3, pp. 2857-2872.
-Moghadas Nejad, F. and Zakeri, H., (2011), “An expert system based on wavelet transform and radon neural network for pavement distress classification”, Expert Systems with Applications, Vol. 38, No. 3, pp. 7088-7101.
-Nallamothu, S. and Wang, K. C. P., (1996), “Experimenting with recognition accelerator for pavement distress identification”, Transportation Research Record, Vol. 1536, pp. 130-135.
-Ouyang, A., Dong, Q., Wang, Y. and Liu, Y., (2014), “The classification of pavement crack image based on beamlet algorithm”, in: 7th IFIP WG 5.14 international conference on computer and computing technologies in agriculture, CCTA 2013.
-Rosa, P., (2012), “Automatic pavement crack detection and classification system”, Transportation Research Board, National Research Council, Washington, D.C., pp. 57-65.
-Singh, R., (2016), “A comparison of gray-level run length matrix and gray-level co-occurrence matrix towards cereal grain classification”, International Journal of Computer Engineering & Technology (IJCET), Vol. 7, No. 6, pp. 9-17.
-Srinivasan, G. N. and Shobha, G., (2008), “Statistical texture analysis”, proceedings of world academy of science, engineering and technology, No. 36, pp. 207-213.
-Tang, X., (1998), “Texture information in run-length matrices”, IEEE Transactions on Image Processing, Vol. 7, No. 11, pp. 1602-1609.
-Wang, K. C. P., Li, Q. J., Yang, G., Zhan, Y. and Qiu, Y., (2015), “Network level pavement evaluation with 1 mm 3D survey system”, journal of traffic and transportation egineering, Vol. 2, No. 6, pp. 391-398.
-Wang, K. C. P., (2009), “Wavelet-based pavement distress image edge detection with Trous algorithm”, Transportation Research Record: Journal of the Transportation Research Board, Vol. 2024, pp.73-81.
-Wang, W., Watkins, H. and Kuchikulla, K., (2002), “Digital distress survey of airport pavement surface”, Federal aviation administration airport technology transfer conference.
-Wimmer, G., Tamaki, T., Hafner, M., Yoshida, S., Tanaka, S. and Uhl, A., (2016), “Directional wavelet based features for colonic polyp classification”, Medical Image Analysis, Vol. 31, pp. 16-36.
-Zakeri, H., Moghadas Nejad, F. and Fahimifar, A., (2016), “Image based techniques for crack detection, classification and quantification in asphalt pavement: a review”, Archives of Computational Methods in Engineering, pp. 1-43.
-Zayed, N. and Elnemr, H., (2015), “Statistical analysis of haralick texture features to discriminate lung abnormalities”, International Journal of Biomedical Imaging, Vol. 2015, Article ID 267807, pp. 1-7.
-Zhu, Z., Song, R. and Chen, S., (2016), “A novel method of image features extraction and application”, 31st Youth Academic Annual Conference of Chinese Association of Automation, Wuhan, China.
-Zou, Q., Cao, Y., Li, Q., Mao, Q. and Wang, S., (2008), “Cracktree: automatic crack detection from pavement images”, Pattern Recognition Letters, Vol. 33, No. 3, pp. 227–238.