Investigation and Comparison the Effects of Waste Fiber Bundles and Waste Tire on the Strength Properties of Clayey Sand Stabilized with Cement

Document Type : Original Article

Authors

1 M.Sc., Grad., Department of Earthquake and Geotechnical Engineering, Faculty of Civil and Survey Engineering, Graduate University of Advanced Technology, Kerman, Iran.

2 Assistant Professor, Department of Earthquake and Geotechnical Engineering, Faculty of Civil and Survey Engineering, Graduate University of Advanced Technology, Kerman, Iran.

Abstract

This study investigates the possible uses of fiber bundles, shredded tire and tire cord scrap (individually and in combination with cement) in clayey sand stabilization. Several basic characteristics of experimental specimens obtained with Atterberg limit, standard proctor compaction, and unconfined compression strength (UCS). These properties are compared with those of un-stabilized clayey sand and stabilized clayey sand with cement and the observed test results are then explained. Results of experimental study indicate that cement mixture treatments play a prominent role in reducing the soil plasticity index (PI). Furthermore, the results of the compaction test show that the utilization of waste in sandy soil stabilization decreases the optimum moisture content and also decreases the maximum dry density. Among the used waste materials, fiber bundles showed the greatest impact on maximum dry density with 1.4% reduction. The results show that using waste materials alone to stabilize clayey soil results in a slight increase in the UCS of the specimens, whereas combining waste with cement results in a sharp increase in the UCS of the samples in the same curing time. Additionally, the samples treated with fiber bundles have the most remarkable increase in UCS and maximum displacement compared to other samples, respectively 32 and 58 percent. The reason that fiber bundles becomes more efficient waste material is rooted from rising the contact area, plummeting the specific gravity and augmenting the uniform distribution in the clayey sandy soils.

Keywords


- طاهرخانی، ح. و کاظمی ثانی فریمانی، ب.، (1394)، "­بررسی آزمایشگاهی اثر استفاده از الیاف کربن و نایلون بر عملکرد بتن آسفالتی"، فصلنامه مهندسی حمل و نقل، سال هفتم، شماره 1، پاییز 1394، ص.87- 103.
-طائریان، ا. ابطحی، س. م.، کوشا، ب. و حجازی، س.م.، (1394)، "بررسی مکانیکی اثر کاربرد ذرات لاستیک در قیر". فصلنامه مهندسی حمل و نقل، سال ششم، شماره 3، بهار، ص. 479- 492.
-طاهرخانی، ح. و سلامی، ح.، (1392)، "­یادداشت پژوهشی مقایسه تثبیت کننده­های آهک، سیمان و CBR PLUS برای تثبیت خاک رس". فصلنامه مهندسی حمل و نقل، سال پنجم، شماره 2، زمستان، ص. 263- 274.
-فخری، م. حسنی، ا. و صابری کرهرودی، ف.، (1395)، "­تاثیر استفاده از خرده لاستیک بر خصوصیات روسازی بتن غلتکی­"، مهندسی زیرساخت های حمل و نقل، سال دوم، شماره 2، تابستان، ص. 37-50.
-مدرس، ا. و ایار، پ.، (1394)، "­استفاده از پودر ضایعات زغال سنگ و آهک در مخلو طهای آسفالتی بازیافت شده با قیرامولسیون". فصلنامه مهندسی حمل و نقل، سال هفتم، شماره 1، پاییز،
ص. 121- 140.
-محمدی، مسعود و توفیق، وحید. (1395) " بررسی آزمایشگاهی تثبیت و تسلیح ماسه با استفاده از الیاف و اپوکسی رزین "، مهندسی زیرساخت­های حمل و نقل، سال دوم، شماره 1. بهار،
ص. 103- 118.
 
-منصوریان، ا. و مولایی، م..، (1394) " ارزیابی مقاومت شیارشدگی مخلوط­های آسفالتی با استخوان بندی سنگ دانه­ای حاوی
افزودنی­های خرده لاستیک و شیشه ". مهندسی زیرساخت های حمل و نقل، سال اول، شماره 2. تابستان، ص. 77- 86.
 
-Anastasiadis, A., Senetakis, K. and Pilitakis, K., (2012), “Small-strain shear modulus and damping ratio of sand–rubber and gravel–rubber mixtures”, Geotechnical and Geological Engineering. 30 (2), pp.363–382.
 
-Al-Rawas, A.A., Taha, R., Nelson, J.D., Al-Shab, T. and Al-Siyabi, H.­, (2002), “A Comparative Evaluation of Various Additives Used in the Stabilization of Expansive Soils”. Geotechnical Testing Journal, 25 (2), pp.199-209.
 
-ASTM D422, (2007), “Standard test method for particle-size analysis of Soils”, Annual Book of ASTM Standards, West Conshohocken, PA, Vol. 04.08.
 
-ASTM D4318, (2010), “Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soil”. Annual Book of ASTM Standards, West Conshohocken, PA. Vol. 04.08.
 
-ASTM D698, (2012), “Standard test method for Laboratory Compaction Characteristics of Soil Using Standard Effort”. Annual Book of ASTM Standards, West Conshohocken, PA, Vol. 04.08.
 
ASTM D 2166, (1982), “Standard Test Method for Unconfined Compressive Strength of Cohesive Soil”. West Conshohocken, Pennsylvania.
 
-Bell, F.G., (1988), “Stabilization and treatment of clay soils with lime”, Journal of Ground Engineering, 21(1), pp. 10-15.
 
-Chen, H. and Wong, Q., (2006), “The behavior of soft soil stabilization using cement”, Bulletin of Engineering Geology and the Environmental, pp.10-15.
 
-Croft, J.B., (1967), “The Influence of Soil Mineralogical Composition on Cement Stabilization”, Geotechnique, London, England, 17, pp.119-135.
 
-Chen, M. and Shen, Sh., (2015), “Laboratory evaluation on the effectiveness of polypropylene fibers on the strength of fiber-reinforced and cement-stabilized Shanghai soft Clay”, Geotextiles and Geomembranes, pp.1-9.
 
-Hambirao, G.S. and Rakaraddi, P.G., (2014), “Soil Stabilization Using Waste Shredded Rubber Tyre Chips”, IOSR Journal of Mechanical and Civil Engineering 11(1), pp.20-27.
 
-Kaneko, K., Orense, R.P., Hyodo, M. and Yoshimoto, N., (2013), “Seismic response characteristics of saturated sand deposits mixed with tire chips”. J. Geotechnical and Geoenvironmental Engineering. 139 (4),
pp.633–643.
 
-Mashiri, M.S., Vinod, J.S., Neaz Sheikh, M. and Tsang, H., (2015), “Shear strength and dilatancy behaviour of sand–tyre chip mixtures”. Soils and Foundations, 55 (3), pp.517-528.
 
-Saride, S., Puppala, A. and Chikyala, S., (2013), “Swell-shrink and strength behaviors of lime and cement stabilized expansive organic clays”. Applied Clay Science, 85, pp.39–45.
 
-Signes, C.H., Garzón-Roca, J., Fernández, P.M., Torre, M.E. and Franco, R.I., (2016), “Swelling potential reduction of Spanish argillaceous marlstone Facies Tap soil through the addition of crumb rubber particles from scrap tyres”, Applied Clay Science, 132, pp.768–773.