Laboratory-Numerical Evaluation of Semi-Prefabricated Block Pavement on Sandy and Weak Subgrade (National-Applied Plan)

Document Type : Original Article

Authors

1 Associate Professor, Faculty of Civil Engineering, Yazd University, Yazd, Iran.

2 Ph.D., Student, Faculty of Civil Engineering, Yazd University, Yazd, Iran.

3 M.Sc., Grad., Research and Development Manager of P. Bell Road Construction Company, Kerman, Iran.

10.22034/road.2021.275494.1940

Abstract

Background : Preparing the roads in the first period after the accidents and strengthening them against natural destructive factors is the preservation of national assets. Roads with low traffic and passages along the desert and beaches lose their resistance when water currents occur and it is not possible to establish traffic flow. On the other hand, in normal times, walking in these spaces is considered as the main model of sports and recreation in these areas. Pavement subgrade in these areas is often made of sand with low bearing capacity. Therefore, providing a suitable pavement for these areas is of special importance.
Conclusion: In laboratory modeling, it was shown that increasing the bed moisture sharply reduces the settling of block pavement and increases the settling rate. Numerical analysis on finite element model deformation showed that the distance between the golden appendages reduces the surface deformation and the possibility of failure. Creating a suitable pavement in critical situations for the flow of heavy traffic during emergency relief, especially in the case of permeable runoff in sandy subgrade in the desert and sea areas.

Keywords


-آجرلو، ع. م، حجتی، ر، احمدی، ف.،(1394)، "طراحی روسازی بلوکی بتن مسلح به روش مکانیستیک و مطالعات آزمایشگاهی بر روی آن، هفتمین کنفرانس ملی بتن ایران"، تهران، ص.1.
-خبیری، م. م و بلوچ سیرگانی، پ.، (1398)، "اثر پاسخ در برابر بارگذاری و مشخصات مکانیکی مصالح اساس بر عملکرد خستگی روسازی بلوکی بتنی"، سومین کنفرانس ملی رویه‌های بتنی، 3 و 4 اردیبهشت، دانشگاه علم و صنعت، ص.-8.
-عابدینی، م، ارغشی، م. ر.، (1398)، "ارائه الگوی پیشرفته روسازی پیش تنیده بلوکی بتنی نفوذپذیر"، سومین کنفرانس ملی رویه‌های بتنی، 3 و 4 اردیبهشت ماه، دانشگاه علم و صنعت، تهران، ایران، ص.2.
-محمدیان، س.، (1388)، "تعیین معیار طراحی برای نفوذ آبهای سطحی در روسازی بلوکی بتنی با استفاده از مدل‌های عددی و آزمایشگاهی"، رساله دکتری، دانشگاه تربیت مدرس، تهران، ایران، ص.153.
-مقدس نژاد، ف.، (1398)، "تحلیل و طراحی روسازی‌های بلوکی بتنی بنادر با استفاده از روش المان‌های محدود سه بعدی، سومین کنفرانس ملی رویه‌های بتنی"، 4 اردیبهشت، دانشگاه علم و صنعت، تهران، ایران، ص.1.
-منجم، م.س و طاری بخش، م.، (1390)، "بررسی اثر شکل و الگوی چیدمان بلوک‌‌ها بر عملکرد روسازی‌های بلوکی بتنی، ششمین کنگره ملی مهندسی عمران"، 6 اردیبهشت، دانشگاه سمنان، سمنان، ص.2.
-Bles, T. J., van der Doef, M. R., van Buren, R., Buma, J. T., Brolsma, R. J., Venmans, A. A. M., & van Meerten, J. J., (2012), “Investigation of the blue spots in the Netherlands National Highway Network”, Deltares rapport, 1205568-000.
-Cova, T. J., & Conger, S., (2004), “Transportation hazards, Handbook of transportation engineering”, No.12. pp. 17-1.
-Hall, K., & Tayabji, S., (2008), “Precast Concrete Panels for Repair and Rehabilitation of Jointed Concrete Pavements TechBrief FHWA-IF-09-003, Washington, DC: Federal Highway Administration,Research Report No.H-18734, pp.63.
-Jenelius, E., & Mattsson, L. G., (2015), “Road network vulnerability analysis: Conceptualization, implementation and application, Computers, Environment and Urban Systems”, 49, pp.136-147.
-Khabiri, M. M., (2010), “The effect of stabilized subbase containing waste construction materials on reduction of pavement rutting depth”, Electronic Journal of Geotechnical Engineering, 15,
pp.1211-1219.
-Lu, D., (2020), “Pavement Flooding Risk Assessment and Management in the Changing Climate, ReportNo.8743, pp.1.
-Mishra, T., French, P., & Sakkal, Z., (2011), “Engineering a Better Road—Use of 2-Way Pretensioned Precast Concrete Pavement for Rapid Rehabilitation”, In Proceedings of the 57th Annual PCI Convention and National Bridge Conference, October, Salt Lake City, pp.22–26.
-MoqadasNejad, F. M., (2003), “Finite element analysis of concrete block paving”, In 7th international conference on concrete block paving”, Iranian Concrete Association Quarterly Ar.No.21.pp.1.12.
-Pregnolato, M., Ford, A., Wilkinson, S. M., & Dawson, R. J., (2017), “The impact of flooding on road transport: A depth-disruption function”, Transportation research part D: transport and environment, 55,
pp.67-81.
-Saberian, M., & Khabiri, M. M., (2017), “Experimental and numerical study of the effects of coal on pavement performance in mine haul road. Geotechnical and Geological Engineering”, 35(5), pp.2467-2478.
-Shackel, B., (1991), “Design and construction of interlocking concrete block pavements”, Elsevier Applied Science, In 7th International Conference on Concrete Block Paving, Tel Aviv.No.1.pp.1.
-Soutsos, M. N., Tang, K., Khalid, H. A., & Millard, S. G., (2011), “The effect of construction pattern and unit interlock on the structural behaviour of block pavements”, Construction and Building Materials, 25(10), pp.3832-3840.
-Tayabji, S., Ye, D., & Buch, N., (2013), “Precast concrete pavement technology”, Transportation Research Board.
-Yue, S. C., Murrel, S., & Larrazabal, E., (2003), “Precast Concrete Pavement Tests on Taxiway DD at La-Guardia Airport”, Airfield Pavements: Challenges and New Technologies.
-Zoccali, P., Moretti, L., Di Mascio, P., Loprencipe, G., D’Andrea, A., Bonin, G.,‌‌& Caro, S. (2018), “Analysis of natural stone block pavements in urban shared areas”, Case Studies in Construction Materials, 8,
pp.498-506.