Selection of Optimal Single Tunnel Drilling Method in Soil (Case Study: Isfahan City Train Line 3)

Document Type : Original Article

Authors

Department of Civil Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.

Abstract

Today, with the advancement of technology, the relative ease of drilling and underground construction, many countries have turned their attention to the construction of underground space. The need for an underground transportation system is evident in most major cities around the world, especially in areas with traffic congestion. This system requires a tunnel structure that is constructed in urban areas, mainly on loose lands and in shallow parts, and its impact can extend to the ground level. The choice of the best method for drilling these tunnels is a function of the soil characteristics, cross section and location of the tunnel, which should be considered according to the drilling area. In this paper, the mentioned cases have been investigated for Isfahan metro line 3 in the area of agricultural station which is to be drilled by NATM method in order to find the optimal drilling condition. The results show that the choice of drilling method pit can have significant effects on subsidence, tunnel cross-section deformation and horizontal displacement at the ground level. Based on the results, the effect of loading conditions, installation geometry, drilling pattern, different arrangement of surface structures, amount of overhead, dimensions of overhead application plate on tunnel behavior have been investigated.

Keywords


-سالنامه آماری استان اصفهان، (1391)، "شرکت مهندسین مشاورین زمین فن­آوران"، گزارش مطالعات نهایی ژئوتکنیک مسیر.
-شرکت مهندسین مشاورین زمین فن­آوران، مهندسین مشاور فربر، (1394)، "بررسی روش­­های مختلف اجرا در طول کل مسیر طرح خط 3 قطار شهری اصفهان"، مهندسین مشاور فربر.
-Anagnostou G Anagnostou, G., (2007), "Continuous Tunnel Excavation in a Poro-Elastoplastic Medium", Proceedings of the 10th International Symposium on Numerical Models in Geomechanics: NUMOG X.,
Rhodes. Taylor & Francis Group. ISSN: 9780415440271, pp. 183-188.
-Broere W., (2016), "Urban underground space: Solving the problems of today’s cities", Tunn Undergr Sp Technol 55, pp.245–248.
doi: 10.1016/j.tust.2015.11.012.
-Burd, H. J., Houlsby, G. T., Augarde, C. E., & Liu G Burd, H. J., Houlsby, G. T., Augarde, C. -E., & Liu, G., (2000), "Modelling Tunnelling-Induced Settlement of Masonry Buildings. Proceedings of the Institution of Civil Engineers, Geotechnical Engineering, Vol. 143, pp. 17-29.
http://www-civil.eng.ox.ac.uk/pe.
-Chakeri H., Hasanpour R., Hindistan MA, Ünver B., (2011), "Analysis of interaction between tunnels in soft ground by 3D numerical modeling", Bull Eng Geol Environ 70, pp. 439–448.
doi: 10.1007/s10064-010-0333-8.
-Chen SL, Gui MW, Yang MC., (2012), "Applicability of the principle of superposition in estimating ground surface settlement of twin- and quadruple-tube tunnels", Tunn Undergr Sp Technol 28:135–149.
doi: 10.1016/j.tust.2011.10.005.
-Chen SL, Lee SC, Gui MW., (2009), "Effects of rock pillar width on the excavation behavior of parallel tunnels", Tunn Undergr Sp Technol 24, pp.148–154.
doi: 10.1016/j.tust.2008.05.006.
-de Farias MM, Moraes ÁH, de Assis AP., (2004), "Displacement control in tunnels excavated by the NATM: 3-D numerical simulations", Tunn Undergr Sp. Technol 19, pp.283–293.
doi: 10.1016/j.tust.2003.11.006.
-Desari, G. R., Rawlings, C. G., & Bolton MD Desari, G. R., Rawlings, C. G., & Bolton, M. D., (1996), "Numerical Modelling of a NATM Tunnel Construction in London Clay", Proceedings of the International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground at London,
pp. 491-496.
-Dimmock PS., Mair RJ., (2008), "Effect of building stiffness on tunnelling-induced ground movement", Tunn Undergr Sp Technol 23, pp.438–450.
doi: 10.1016/j.tust.2007.08.001.
-Gupta S, Liu WF, Degrande G, et al., (2008), "Prediction of vibrations induced by underground railway traffic in Beijing", J Sound Vib 310, pp.608–630.
doi: 10.1016/j.jsv.2007.07.016.
-Jones S, Hussein M, Hunt H., (2010), "Use of PiP to investigate the effect of a free surface on ground vibration due to underground railways", Acoust Aust 38, pp.20–24.
-Karakus M, Ozsan A, Başarir H., (2007), "Finite element analysis for the twin metro tunnel constructed in Ankara Clay", Turkey. Bull Eng Geol Environ 66, pp.71–79.
doi: 10.1007/s10064-006-0056-z.
-Katzenbach, R., & Breth H Katzenbach, R., & Breth, H., (1981), "Nonlinear 3D Analysis for NATM in Frankfurt Clay", Proceedings of the10th International Conference on Soil Mechanics and Foundation Engineering,
pp. 315-318. Rotterdam:Balkema. ISBN: 9061912105.
-Lee, G. T. K., & Ng. CWW Lee, G. T. K., & Ng, C. W. W., (2002), "Three-Dimensional Analysis of Ground Settlements due to Tunnelling: Role of K0 and stiffness Anisotropy", Proceedings of the International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground.
-Li S., Shangguan Z., Cao L., (2015), "Influences of ground loss ratios on internal force characteristics on segments of tunnel linings", Electron J Geotech Eng 20,
pp.4223–4232.
-Li S, Yuan C, Feng X, Li S., (2016), "Mechanical behaviour of a large-span
double-arch tunnel", KSCE J Civ Eng 20, pp.2737–2745.
doi: 10.1007/s12205-016-0456-y.
-Liu HY, Small JC, Carter JP., (2008), "Full 3D modelling for effects of tunnelling on existing support systems in the Sydney region", Tunn Undergr Sp Technol 23, pp.399–420.
doi: 10.1016/j.tust.2007.06.009.
-Mathew G V., Lehane BM, (2013), "Numerical back-analyses of greenfield settlement during tunnel boring", Can Geotech J 50, pp.145–152.
doi: 10.1139/cgj-2011-0358.
-Mirhabibi A, Soroush A., (2012), "Effects of surface buildings on twin tunnelling-induced ground settlements", Tunn Undergr Sp Technol 29, pp.40–51.
doi: 10.1016/j.tust.2011.12.009.
-Möller SC, Vermeer PA., (2008), "On numerical simulation of tunnel installation", Tunn Undergr Sp Technol 23, pp.461–475.
doi: 10.1016/j.tust.2007.08.004.
-National Highway Institute (US), (2010), Parsons, Brinckerhoff, & Quade & Douglas, "Technical Manual for Design and Construction of Road Tunnels civil Elements", AASHTO.
-Ng CWW, Lee KM, Tang DKW., (2004), "Three-dimensional numerical investigations of new Austrian tunnelling method (NATM), twin tunnel interactions, Can Geotech J. 41, pp.523–539.
doi: 10.1139/T04-008.
-Ocak, I., (2008), "Control of surface settlements with umbrella arch method in second stage excavations of Istanbul Metro. Tunn Undergr Sp Technol 23, pp.674–681.
doi: 10.1016/j.tust.2007.12.005.
-Pejić­., (2013), "Design and optimisation of laser scanning for tunnels geometry inspection", Pergamon.
-Sun Y, Xu YS, Shen SL, Sun WJ., (2012), "Field performance of underground structures during shield tunnel construction", Tunn Undergr Sp Technol 28, pp.272–277.
doi: 10.1016/j.tust.2011.11.010.
-Svoboda T, Mašín D, Boháč J., (2010), "Class A predictions of a NATM tunnel in stiff clay", Comput Geotech 37, pp.817–825.
doi: 10.1016/j.compgeo.2010.07.003.
-Tang, D. K. W., Lee, K. M., & Ng CWW Tang, D. K. W., Lee, K. M., & Ng, C. W. W., (2000), "Stress Paths around a 3-D Numerically Simulated NATM Tunnel in Stiff Clay", Proceedings of the International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground at Tokyo, pp. 443-4.
-Vermeer, P. A., Bonnier, P. G., & Maoller SC Vermeer, P. A., Bonnier, P. G., & Maoller, S. C., (2002), "On a Smart Use of 3D-FEM in Tunnelling", Proceedings of the 8th International Symposium on Numerical Models in Geomechanics pp. 361-366. Rotterdam: A. A. Balkema. ISBN: 905809359X.
-Wang HN, Chen XP, Jiang MJ, et al., (2018), "The analytical predictions on displacement and stress around shallow tunnels subjected to surcharge loadings", Tunn Undergr Sp. Technol 71, pp.403–427.
doi: 10.1016/j.tust.2017.09.015.
-Yoo C., Kim S Bin., (2008),
"Three-dimensional numerical investigation of multifaced tunneling in water-bearing soft ground", Can Geotech J 45, pp.1467–1486.
doi: 10.1139/T08-071.