Statistical Texture Analysis of Asphalt Pavement Distress Images Based on Grey Level Co-occurrence Matrix

Document Type : Original Article

Authors

1 M.Sc., Grad., Civil Engineering Department, Ferdowsi University of Mashhad, Mashhad, Iran.

2 Assistant Professor, Civil Engineering Department, Ferdowsi University of Mashhad, Mashhad, Iran.

3 Associate Professor,‌ Department of Civil Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.

4 Professor,‌ Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.

Abstract

Evaluation of pavement performance plays a major role in pavement management systems for determination of optimum strategy in repair and maintenance of the road. One of the most prominent assets in evaluation of the pavement is identification and survey of pavement surface distresses. In the past two decades, extensive studies have been carried out in order to develop automatic methods for pavement distress evaluation. Most of these methods are based on computer vision and image processing techniques. Of the most important components of machine vision systems is the feature extraction process. Textural features present more detailed information about the image regions characteristics compared to other features such as color and geometrical (shape) properties. In the present study, after acquisition of six different groups of asphalt pavement distress images under controlled condition, in order to analyze and describe their texture, second order statistics based on grey level co-occurrence matrix has been employed. In order to generate the images co-occurrence matrices, four distinct directions and three different distance (offset) parameters have been utilized. Based on the results of the classification of distress images acquired by Mahalanobis minimum distance classifier, it can be concluded that statistical indices extracted from grey level co-occurrence matrix having distance parameter equal to one, have superior discrimination performance in camparison to other selected distance values. The classification accuracy rates of asphalt pavement distress images based on grey level co-occurrence matrix with one, two and three distance parameters values are 80%, 75% and 60%, respectively.

Keywords


-شهابیان مقدم، ر. صحاف، س.ع. محمدزاده مقدم، ا. و پوررضا، ح.ر.، (1396)، "مقایسه روش­های آنالیز بافت تصویر به منظور شناسایی و طبقه بندی خودکار خرابی‏های روسازی آسفالتی" ، فصلنامه مهندسی زیرساخت­های حمل و نقل، دوره سوم، شماره سوم، ص. 1-22.
- شهابیان مقدم، ر.، (1396)، "تشخیص و طبقه­بندی خودکار خرابی­های روسازی آسفالتی بر پایه آنالیز بافت تصویر در حوزه مکان و تبدیل"، پایان­نامه کارشناسی ارشد، اساتید راهنما: صحاف، س.ع. محمدزاده مقدم، ا.، دانشکده مهندسی، دانشگاه فردوسی مشهد، مشهد، ایران.
- Acosta, J. A., Figueroa, J. L. and Mullen, R. L., (1995), “Algorithm for pavement distress classification by video image analysis”, Transport. Res. Record, 1505:, pp.27-38.  
-­Anuradha, K. and Sankaranarayanan, K., (2013), “Statistical feature extraction to classify oral cancers”, J. Global Res. Comp. Sci., 4(2),
pp.8-12.
- Cheng, H. D., Glazier, C. and Hu, Y. G., (1999), “Novel approach to pavement craking detection based on fuzzy set theory”, J. Comp. Civ. Eng., 13(3), pp.270-280.
-Chua, K. M. and Xu, L., (1994), “Simple procedure for identifying pavement distresses from video images”. J. Transport, Eng., 120(3), pp.412-431.
-Dettori, L. and Semlera, L., (2007), “A comparison of wavelet, ridgelet, and curvelet based texture classification algorithms in computed tomography”, Comp. Biol. Med., 37(4), pp.486-498.
-Gonzalez, R.C. and Woods, R.E., (2006), “Digital image processing 3/E”, Prentice Hall, Upper Saddle River, NJ, USA.
-Jiang, J., Liu, H., Ye, H. and Feng, F., (2015), “Crack enhancement algorithm based on improved EM”, J. Comp. Sci., 12(3),
pp.1037-1043.
-Lee, D., (2003), “A Robust Position Invariant Artificial Neural Network for Digital Pavement Crack Analysis”, Technical Report, TRB Annual Meeting, Washington, DC, USA.
-Manning, K. and Mohajeri, R., (1991), “An operating system of pavement distress diagnosis by image processing”, Transport. Res. Record, 1311, pp.120-130.
-Moghadas Nejad, F. and Zakeri, H., (2011a), “A comparison of multi-resolution methods for detection and isolation of pavement distress”. Expert Syst. Appl., 38(3), pp.2857-2872.
-Moghadas Nejad, F. and Zakeri, H., (2011b), “An expert system based on wavelet transform and radon neural network for pavement distress classification”, Expert Syst. Appl., 38(6), pp.7088-7101.
-Nallamothu, S. and Wang, K. C. P., (1996), “Experimenting with recognition accelerator for pavement distress identification”, Transport. Res. Record, 1536, pp.130-135.
-Ouyang, A., Dong, Q., Wang, Y. and Liu, Y., (2014), “The classification of pavement crack image based on beamlet algorithm”, 7th IFIP WG 5.14 International Conference on Computer and Computing Technologies in Agriculture.
-Rosa, P., (2012), “Automatic pavement crack detection and classification system”, Transport. Res. Board, 11, pp.57-65.
-Salman, M., Mathavan, S., Kamal, K. and Rahman, M., (2013), “Pavement crack detection using the Gabor filter”, Proc. 16th International IEEE Conference on Intelligent Transportation Systems: Intelligent Transportation Systems for All Modes, The Hague, Netherlands,
pp. 2039-2044.
-Singh, R., (2016), “A comparison of gray-level run length matrix and gray-level co-occurrence matrix towards cereal grain classification”, Int. J. Comp. Eng. Technol. (IJCET), 7(6), pp. 9-17.
-Srinivasan, G. N. and Shobha, G., (2008), “Statistical texture analysis”, Proc. World Acad. Sci., Eng. Technol., 36, pp.207-213.
-Wang, K. C. P., (2009), “Wavelet-based pavement distress image edge detection with Trous algorithm”, Transport. Res. Record, 2024, pp. 73-81.
-Wang, K. C. P., Li, Q. J., Yang, G., Zhan, Y. and Qiu, Y. 2015. “Network level pavement evaluation with 1 mm 3D survey system”. J. Traffic Transport. Eng., 2(6), 391-398.
-Wang, W., Watkins, H. and Kuchikulla, K., (2002), “Digital distress survey of airport pavement surface”, Federal Aviation Administration Airport Technology Transfer Conference, Washington, DC.
-Zakeri, H., Moghadas Nejad, F. and Fahimifar, A., (2016), “Image based techniques for crack detection, classification and quantification in asphalt pavement: A review”, Arch. Comp. Meth. Eng., 24(4), pp.935-977.
-Zhou, J., Huang, P. S. and Chiang, F., (2006), “Wavelet-based pavement distress detection and evaluation”. Opt. Eng., 45(2), pp.2006-2011.
-Zou, Q., Cao, Y., Li, Q., Mao, Q. and Wang, S., (2008), “CrackTree: Automatic crack detection from pavement images”, Pattern Recog., Lett., 33(3), pp. 227-238.