Improvement of Alluvial Soils Using Cement Injection Method

Document Type : Original Article

Authors

1 Department of Engineering, Faculty of Civil and Architecture Engineering, Malayer University, Malayer, Iran.

2 M.Sc.,Student, Department of Engineering, Malayer University, Malayer, Iran.

Abstract

Injection soil improvement is one of the methods of modifying the properties of the site of construction projects or existing structures. Several stabilization techniques are available to improve such conditions, including compaction, consolidation, mechanical stabilization, and cement injection into the soil. The injection is often done by filling cavities and fractures with grout or cement mortar. Despite almost the same principles, injection methods have different equipment and procedures. These methods have their characteristics and advantages due to insufficient bearing capacity, shrinkage swelling, settling, and durability. This study intended to review the studies and methods of improving alluvial soils using the cement injection method. After reviewing the results of this study, we can get three main factors: percentage of cement, setting time (sample age), and percentage of coarse soils have a very effective and controlling role in the strength of soil-cement samples, but the effect of these three factors is not the same in increasing strength. The results of such experiments can be used as a basis for quality control of cement injections in porous media, especially in coarse-grained alluvial sediments and jointed and crushed rocks. The resistance of coarse-grained alluvial sediments with the potential for spillage can be increased, during or after tunnel excavation, by adding a minimum percentage of injected cement to the desired strength or design strength, which is essential from the technical and economic justification of injection projects.

Keywords


-عفتی، پیمان و روحانی، احسان (1397). بررسی میزان تأثیرگذاری شرایط مختلف شمع بر کاهش نشست فونداسیون و تحلیل میزان کارایی شمع‌ها در بهبود این شرایط در خاک‌های آبرفتی، کنفرانس عمران، معماری و شهرسازی کشورهای جهان اسلام، تبریز.
-قارونی نیک، مرتضی و بزرگمهر نیا، سعید،(1388). تزریق در سازندهای آبرفتی به‌منظور پایدارسازی تونل‌های مترو و راه‌آهن، دومین کنفرانس بین‌المللی پیشرفته‌ای اخیر در مهندسی راه‌آهن، تهران.
-بزرگمهرنیا، سعید (1388). تزریق در سازندهای آبرفتی به‌منظور پایدارسازی تونل‌ها. پایان‌نامه کارشناسی، دانشکده مهندسی راه‌آهن دانشگاه علم و صنعت ایران.
-مجدی، عباس (1383). راهنمای بررسی طرح تزریق در تونل‌ها سازه‌های زیرزمینی. شرکت متروی تهران.
-حائری، سید محسن، سید شهاب‌الدین یثربی، علی ارومیه‌ای و ابراهیم اصغری (1383). تأثیر سیمانی شدن بر مقاومت برشی آبرفت‌های درشت‌دانه تهران. امیرکبیر، 15(ج-59)، 57-43.
-حائری، سید محسن، سید شهاب‌الدین یثربی، علی ارومیه‌ای و ابراهیم اصغری (۱۳۸۱). ویژگی‌های زمین‌شناسی مهندسی آبرفت‌های درشت‌دانه و سیمانی شده تهران، فصلنامه علوم زمین، سازمان زمین‌شناسی کشور، جلد ۱۱، شماره ۴۷، 14-2.
-Anagnostopoulos, C. A. (2005). Laboratory study of an injected granular soil with polymer grouts. Tunnelling and Underground Space Technology, 20(6), 525-533.
-Baharuddin, I. N. Z., Omar, R. C., & Devarajan, Y. (2013). Improvement of engineering properties of liquefied soil using Bio-VegeGrout. In IOP conference series: earth and environmental science, Vol. 16, No. 1, 012104. IOP Publishing.
-Baltenas, A., Paknys, R., Venclova, T., 2002. Vilnius. R. Paknio leidykla, Vilnius, 116-117.
-Basu, D., Salgado, R., & Prezzi, M. (2009). A continuum-based model for analysis of laterally loaded piles in layered soils. Geotechnique, 59(2), 127-140.
-Cao, C. M., & Feng, Z. Q. (2009). Development and application of low viscosity urea-formaldehyde resin grouting material. Mei T'an Hsueh Pao Journal of China Coal Society, 34.
-Cao, S., Li, G., Yao, Q., & Wang, F. (2009). Prediction of quantity of water inrush from coal seam floor and its reinforcement technique by grouting. Chinese Journal of Rock Mechanics and Engineering, 28(2), 312-318.
-Capatti, M. C., Dezi, F., Carbonari, S., & Gara, F. (2018). Full-scale experimental assessment of the dynamic horizontal behavior of micropiles in alluvial silty soils. Soil Dynamics and Earthquake Engineering, 113, 58-74.
Dezi, F., Carbonari, S., & Morici, M. (2016). A numerical model for the dynamic analysis of inclined pile groups. Earthquake Engineering & Structural Dynamics, 45(1), 45-68.
-Duan, H., Jiang, Z., Zhu, S., Yao, P., & Sun, Q. (2012). New composite grouting materials: Modified urea–formaldehyde resin with cement. International Journal of Mining Science and Technology, 22(2), 195-200.
-Duan, H., Jiang, Z., Zhu, S., Yao, P., & Sun, Q. (2012). New composite grouting materials: Modified urea–formaldehyde resin with cement. International Journal of Mining Science and Technology, 22(2), 195-200.
-Faramarzi, L., Rasti, A., & Abtahi, S. M. (2016). An experimental study of the effect of cement and chemical grouting on the improvement of the mechanical and hydraulic properties of alluvial formations. Construction and Building Materials, 126, 32-43.
-Funehag, J., & Fransson, Å. (2006). Sealing narrow fractures with a Newtonian fluid: model prediction for grouting verified by field study. Tunnelling and underground space technology, 21(5), 492-498.
-Funehag, J., & Gustafson, G. (2008). Design of grouting with silica sol in hard rock–New methods for calculation of penetration length, Part I. Tunnelling and underground space technology, 23(1), 1-8.
-Funehag, J., & Gustafson, G. (2008). Design of grouting with silica sol in hard rock–New design criteria tested in the field, Part II. Tunnelling and underground space technology, 23(1), 9-17.
-Ghiasi, V., & Farzan, A. (2019). Numerical study of the effects of bed resistance and groundwater conditions on the behavior of geosynthetic reinforced soil walls. Arabian Journal of Geosciences12(23), 729.
doi.org/10.1007/s12517-019-4947-2
-Ghiasi, V., & Koushki, M. (2020). Numerical and artificial neural network analyses of ground surface settlement of tunnel in saturated soil. SN Applied Sciences2(5), 939.doi.org/10.1007/s42452-020-2742-z
- Ghiasi, V., Ghasemi, S. A. R., & Yousefi, M. (2021). Landslide susceptibility mapping through continuous fuzzification and geometric average multi-criteria decision-making approaches. Natural Hazards107(1), 795-808.
doi.org/10.1007/s11069-021-04606-y
-Ghiasi, V., & Najafi, F. (2022). Investigation of liquefiable soils improvement methods. Road30(110), 41-56.
doi: 10.22034/road.2023.112863
-Ghafari, M., Nahazanan, H., Yusoff, Z. M., & Ghiasi, V. (2021). Effect of soil cohesion and friction angles on reverse faults. Earthquake Engineering and Engineering Vibration20, 329-334. doi.org/10.1007/s11803-021-2023-x
-Ghiasi, V., Haghtalab Joraghani, M., & Rashno, S. (2023). An Overview of Chemical Soil Stabilization Methods. Road31(116), 151-166. doi: 10.22034/road.2022.312705.1988
-Ghiasi, V., & Molaei Tari, P. (2022). Geotechnical design of landfills and solutions for their construction in different soils. Road.
doi: 10.22034/road.2022.324326.2020
--Ghiasi, V., & nazhdghorbani, A. (2022). An overview of the use of fly ash for soil stabilization. Road.
doi: 10.22034/road.2022.333556.2034
-Ghiasi, V., & molaei tari, P. (2023). Investigating the potential application of biochar on soil water retention properties (swrc) with different textures in geotechnical engineering structures. Road. doi: 10.22034/road.2023.353589.2073
-Ghiasi, V., & Sharifi far, F. (2023). Bearing capacity of strip foundation on granular soil reinforced with geogrid. Road.
doi: 10.22034/road.2023.360048.2083
-Ghiasi, V., & Tavagho Hamedani, H. (2022). A review of soil improvement with waste and recycled materials and its impact on soil parameters. Road. doi: 10.22034/road.2022.324228.2019
--Ghiasi, V., & madah, S. (2022). Investigation of increasing shear strength of dispersive clays using additives. Road.
doi: 10.22034/road.2022.324512.2023
-Ghiasi, V., & Mostafaeifar, A. (2023). Assessment of the effects of geosynthetics on geotechnical soils behavior. Road31(115), 67-80. doi: 10.22034/road.2022.323429.2015
-Ghiasi, V., & kamalabadi Farahani, M. (2022). Feasibility study of soil pollution removal using the electrokinetic method. Road. doi: 10.22034/road.2022.323983.2018
--Ghiasi, V., & Dashti famili, S. (2023). A Review of the Factors That Cause Sinkholes and the Effect of Soil Type on Its Formation. Road31(114), 15-32. doi: 10.22034/road.2022.323699.2017
-Ghiasi, V., & Zakavi, I. (2023). Geosynthetics of Stone Columns- A Review. Road31(117),
143-170. doi: 10.22034/road.2022.333550.2033
-­Ghiasi, V., Pauzi, N,I, M.., Karimi, S., and Yousefi, M.(2023),Landslide risk zoning using support vector machine algorithm, Geomechanics and Engineering, 34(3), 267-284.doi: 10.12989/gae.2023.34.3.267
-Ge, L. T., Ye, G. J., & Gao, H. L. (2001). Coal hydrogeology in China.
-Gothäll, R., & Stille, H. (2009). Fracture dilation during grouting. Tunnelling and underground space technology, 24(2), 126-135.
-Gothäll, R., & Stille, H. (2010). Fracture–fracture interaction during grouting. Tunnelling and Underground Space Technology, 25(3), 199-204.
-Hu WY. (2005). The theory and methods of coal mine water disasters controlling. Beijing, China Coal Industry Publishing House.
-Huang, Y., & Wen, Z. (2015). Recent developments of soil improvement methods for seismic liquefaction mitigation. Natural Hazards, 76(3), 1927-1938.
Hughes, P. N., Glendinning, S., Manning, D. A., & White, M. L. (2011). Use of red gypsum in soil mixing engineering applications. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 164(3), 223-234.
-Ibragimov, M. N. (2009). Experience with injection methods for stabilization of bed soils. Soil Mechanics and Foundation Engineering, 46(1), 17-23.
-Ischy, E., & Glossop, R. (1962). An Introduction to alluvial grouting. Proceedings of the Institution of Civil Engineers, 21(3), 449-474.
Ischy, E., & Glossop, R. (1962). AN Introduction To Alluvial Grouting. Proceedings of the Institution of Civil Engineers, 21(3), 449-474.
-Jamshidi, S., Ghiasi, V., Ghanbari, A., & Zanganeh, A. (2022). Evaluation of Burnt Oil and Asphalt Chips on Some Properties of Hot Asphalt Mix. Road30(113), 143-156.doi: 10.22034/road.2022.341569.2047
-Jiang, Z. Q., Wu, S. L., Li, D. L., Yang, C. X., & Jia, S. L. (2005). Chemical pre-grouting treatment applied to water leakage control of fissured surrounding rocks in inclined mine shaft of Zhaozhuang mine. Coal science and Technology, 2, 26-28.
-Kell, J. (1957). Pre-treatment of Gravel for Compressed Air Tunnelling Under the River Thames at Dartford. Institution of Civil Engineers.
-Kitkauskas, N. (1994). Vilniaus arkikatedros požemiai. Kultūra.
-Kuleev, M. T., Kutuzov, B. N., Neporozhnii, V. P., & Popov, A. V. (1970). Anti-seepage curtain in the Aswan Dam. Energiya, Moscow.
-Latini, C., & Zania, V. (2017). Dynamic lateral response of suction caissons. Soil Dynamics and Earthquake Engineering, 100, 59-71.
-Mackevicius, R. (2013). Possibility for stabilization of grounds and foundations of two valuable ancient cathedrals on weak soils in Baltic Sea region with grouting. Procedia Engineering, 57, 730-738.
-Mayer, A. (1958). Cement and Clay Grouting of Foundations: French Grouting Practice. Journal of the Soil Mechanics and Foundations Division, 84(1), 1550-1.
-Mel'nikov, B. N. (1985). Geotechnical masses as a new form of beds for engineering structures. Inzh. Geol, (2), 11-21.
-Monstvilas, K., ISrumpis, G., & NSikauskas, N. (1995). Foundations of Vilnius cathedral and of the Grand Dukes' Palace and the investigations of their ground. In Baltic Geotechnics' 95. Baltic Geotechnical Conference, 5-9.
-Moroz, V. V. (2005). Geocomposite-an effective means of strengthening weak soils. Novye Tekhnol., Tekhnika, Mater, (3), 25-27.
-Osipov, V. I., & Filimonov, S. D. (2002). Hardening and Reinforcement of Weak Soils by the “Geocomposite” Method. Soil Mechanics and Foundation Engineering, 39(5), 171-179.
-Rahimpour, H., Ghiasi, V., Fahmi, A., & Marabi, Y. (2023). Geopolymer vs ordinary portland cement: review of the 3-d printing of concrete. Applied Engineering and Technology2(2), 133-152. doi:10.31763/aet.v2i2.1010
-Sargent, P., Hughes, P. N., Rouainia, M., & White, M. L. (2013). The use of alkali activated waste binders in enhancing the mechanical properties and durability of soft alluvial soils. Engineering geology, 152(1), 96-108.
-Sherwood, P.T., 1993. Soil Stabilisation with Cement and Lime - State of the Art Review. Transport Research Laboratory, Department of Transport. HMSO Publications, 0-11-551171-7.
Shimada, H., Matsui, K., & Inoue, M. (1998), Fundamental experiment for stability of mud slurry in using pipe-jacking. In Proc. of 9th Conference on Trenchless Technology, 37-44.
-Shimada, H., Sasaoka, T., Khazaei, S., Yoshida, Y., & Matsui, K. (2006). Performance of mortar and chemical grout injection into surrounding soil when slurry pipe-jacking method is used. Geotechnical & Geological Engineering, 24(1),57-77.
-Song, Y. B., & Gao, Q. C. (2006). Mechanism of grouting for waterproof using organic material with high water content. Journal of Mining & Safety Engineering, 3, 320-323.
-Stragys, V., Mackevicius, R., (2005). Foundations of ancient buildings having architectural value and their strengthening in Lithuania”. Proceedings of the 13th World Lithuanian Symposium on the Arts and Sciences, Vilnius, Lithuania, 78-79.
-Tombari, A., El Naggar, M. H., & Dezi, F. (2017). Impact of ground motion duration and soil
non-linearity on the seismic performance of single piles. Soil Dynamics and Earthquake Engineering, 100, 72-87.
-Wanghua, S., Yongtao, L., Guantian, L., & Guoqing, W. (2000). Seepage prevention grouting in coalmine shaftwall and mechanism analysis. Chinese Journal OF Geotechnical Engineerin-Cngineering Edition, 22(2), 214-217.
-Yang, M. J., Chen, M. X., & He, Y. N. (2001). Simulating experiment for grouting seepage in rockmass. Journal of Experimental Mechanics, 16(1), 105-112.
-Yao, P. (2007). Study on engineering performance and simulation experiment of cement-based composite grouting material. Xuzhou: China University of Mining & Technology.
-Zhang, G. L., Zhan, K. Y., & SUI, W. H. (2011). Experimental investigation of the impact of flow velocity on grout propagation during chemical grouting into a fracture with flowing water. Journal of China Coal Society, 36(3), 403-406.