Presenting a data mining model based on the index of sustainable urban development affected by Transportation and traffic restrictions during the Covid-19 pandemic

Document Type : Original Article

Authors

1 Industrial Management - Faculty of Management and Accounting - Islamic Azad University, Qazvin branch - Qazvin - Iran

2 Industrial Management, Faculty of Management and Accounting, Islamic Azad University, Qazvin branch, Qazvin, Iran.

Abstract

In response to the Covid-19 pandemic, governments around the world have imposed severe traffic restrictions and presented different scenarios to reduce emissions from traffic sources. By applying the traffic restrictions caused by the Covid-19 epidemic, it was expected to see changes in the concentrations of air pollutants. Therefore, it was decided that the changes of air pollutants as one of the subsets of the environmental index of sustainable urban development during the covid-19 epidemic will be investigated. For this purpose, the aforementioned data are first collected in the four metropolitan cities: Tehran, Karaj, Ahvaz and Tabriz, and then processed and cleaned. After that, a proposed algorithm based on machine learning methods is presented. Machine learning methods: decision tree, random forest, support vector machine, Bayesian network and perceptron neural network are applied to the selected features. Investigations showed that the prediction model using decision tree and random forest had the best performance for both recall and accuracy criteria. The research results showed that the effect of restrictions on the concentration of pollutants in different cities is different. Also, the results show that, in general, the application of traffic restrictions during the epidemic period did not have a significant and noticeable effect in reducing the concentration of air pollutants. Also, by comparing the change in air quality index with the death rate during the epidemic period, it was found that there is no relationship between them.

Keywords


-شگرخدایی، سیده زینب، فتح نیا، امان‌اله و رضوی ترمه، سید وحید. (1401). ارتباط بین کووید-19 و تغییرات آلاینده‌های هوا با استفاده از تصاویر ماهواره‌ای (مطالعه موردی: کلان‌شهرهای تهران، اصفهان و مشهد)، نشریه تحلیل فضایی مخاطرات محیطی، سال نهم، شماره 1، 40-21.
-محمدی، محمد، فقیهی، فرزاد، شریف زاده، مهسا، دستان، علیرضا و احمدی کیا، حسین. (1401). تاثیر محدودیت­های ناشی از همه گیری کووید-۱۹ بر آلودگی هوای شهر اصفهان، سی‌امین کنفرانس بین‌المللی سالانه انجمن مهندسین مکانیک ایران، شماره 30.
-کبیری، مریم و سلیمانی، محسن. (1400). اثر شیوع ویروس کرونا (Covid-19) بر آلودگی هوا در شهر اصفهان، اولین همایش ملی فن‌آوری‌های نوین در محیط زیست و توسعه پایدار بارویکرد کرونا و محیط زیست. دانشگاه بیرجند، دانشکده منابع طبیعی و محیط زیست.
-Alava.J.J., & Singh.G.G. (2022). Changing air pollution and CO2 emissions during the COVID-19 pandemic: Lesson learned and future equity concerns of post-COVID recovery. Environmental Science & Policy, 130, 1-8.
 -Bherwani, H., Gautam, S., & Gupta, A. (2021). Qualitative and quantitative analyses of impact of COVID-19 on sustainable development goals (SDGs) in Indian subcontinent with a focus on air quality. International Journal of Environmental Science and Technology, 18, 1019–1028.
 -Gualtieri, G., Brilli, L., Carotenuto, F., Vagnoli, C., Zaldei, A., & Gioli.B. (2020). Quantifying road traffic impact on air quality in urban areas: a COVID19-induced lockdown analysis in Italy. Environmentall Pollution, 267(115682), 1-10.
 -Hay, N., Onwuzurike, O., Roy, SP., McNamara, P., McNamara, ML., & McDonald, W. (2023). Impact of traffic on air pollution in a mid-sized urban city during COVID-19 lockdowns. Air Qual Atmos Health, 16(6), 1141-1152.
 -Ho, S.L., Yang, S., Ni, G., Lo, E.W.C., & Wong, H.C. (2005). A particle swarm optimization based method for multi-objective design optimizations. IEEE Trans on Magnetics, 41(5), 1756-1759.
-Hyman, S., Zhang, J., Andersen, ZJ., Cruickshank, S., Møller, P., Daras, K., Williams, R., Topping, D., & Lim, YH. (2023). Long-term exposure to air pollution and COVID-19 severity: A cohort study in Greater Manchester. United Kingdom, Environmental Pollution, 327(121594), 1-9.
 -Hudda, N., Simon, MC., Patton, AP., & Durant, JL. (2020). Reductions in traffic-related black carbon and ultrafine particle number concentrations in an urban neighborhood during the COVID-19 pandemic. Science of the Total Environment, 742(140930), 1-10.
 -Huangfu, P., & Atkinson, R. (2020). Long-term exposure to NO2 and O3 and all-cause and respiratory mortality: a systematic review andmeta-analysis. Environment International, 144, 105998-106006.
 -Jerrett, M., Nau, C.L., Young, D.R., Butler, R.K., Batteate, Ch.M., Su, J., Burnett, R.T., & Kleeman, M.J. (2022). Air Pollution and Meteorology as Risk Factors for COVID-19 Death in a Cohort from Southern California. Environmental International, 171(107675), 1-11.
 -Jia, C., Fu, X., Bartelli, D., & Smith, L. (2020). Insignificant impact of the stay-at-home order on ambient air quality in the Memphis Metropolitan Area. U.S.A. Atmosphere, 11(6), 630-640.
 -Liu, J., Lipsitt, J., Jerrett, M., & Zhu, Y. (2020). Decreases in Near-Road NO and NO2 Concentrations during the COVID-19 Pandemic in California. Environment Science Technology Letters, 8(2), 2020, 161–167.
-Lin, G.Y., Chen, W.Y., Chieh, Yi. & T, Yang. (2022). Chang impact analysis of level 3 COVID-19 alert on air pollution indicators using artificial neural network. Ecological Informatics, 69(101674), 1-9.
 -Liyin, Sh., Ochoa, J.J., & Bao, H. (2023). Strategies for Sustainable Urban Development-Addressing the Challenges of the 21st Century. Buildings, 13(4), 847-869.
 -Lv,Y., Tian, H., Luo, L., Liu, S., Bai, X., Zhao, H., Lin, S., Zhao, S., Guo, Z., Xiao, Y., & Yang, J. (2022). Meteorology-normalized variations of air quality during the COVID-19 lockdown in three Chinese megacities. Atmospheric Pollution Research, 13(6), 1-11.
 -Rupani, P.F., Nilashi, M., Abumalloh, R.A., Asadi, S., Samad, S., & Wang, S. (2020). Coronavirus pandemic (COVID-19) and its natural environmental impacts. International Journal of Environmental Science and Technology, 17(11), 4655–4666.
-Saharan, U.S., Kumar, R., Tripathy, P., Sateesh, M., Garg, J., Sharma, S.K., & Mandal, T.K. (2022). Drivers of air pollution variability during second wave of COVID-19 in Delhi. India, Urban Climate, 41(101059), 1-10.
 -Uday, U., Bethineedi, L.D., Hasanain, M., Ghazi, B.K., Nadeem, A., Patel, P., & Khalid, Z. (2022). Effect of COVID-19 on air pollution related illnesses in India. Annals of medicine and surgery, 78(103871), 1-4.
 -Wang, S., Ma, Y., Wang, Z., Wang, L., Chi, X., Ding, A., Yao, M., Li, Y., Li, Q., Wu, M., Zhang, L., Xiao, Y., & Zhang, Y. (2020). Mobile monitoring of urban air quality at high spatial resolution by low-cost sensors: Impacts of COVID-19 pandemic lockdown. Atmos Chem Phys, 21(9), 7199–7215.
 -Wen, Ch., Akram, R., Irfan, M., Iqbal, w., Dagar, V., Acevedo-Duqued, A., & Saydaliev, H.B. (2022). The asymmetric nexus between air pollution and COVID-19: Evidence from a non-linear panel autoregressive distributed lag model. Environmental Research, 209(112848), 1-9.
-Wijnands, J.S., Nice, K.A., Seneviratne, S., Thompson, J., & Stevenson, M. (2022). The impact of the COVID-19 pandemic on air pollution: A global assessment using machine learning techniques. Atmospheric Pollution Research, 13(6), 1-16.
 -Xiang, J., Austin, E., Gould, T., Larson, T., Shirai, J., Liu, Y., Marshall. J., & Seto, E., (2020). Impacts of the COVID-19 responses on traffic-related air pollution in a Northwestern US city. Science of The Environment, 747(141325), 1-9.
 -Yao, H., Lu, W., Niu, G., Zhang, Q., Jiang, Q., & Ni.T. (2021). Characterizing the air pollution of the cities in the closure of corona virus disease 2019 in China. International Journal of Environmental Science and Technology, 18, 2053–2062.
 -Yang, M., Chen, L., Msigwa, G., Tang, K.H.D., & Yap, P.S. (2022). Implications of COVID-19 on global environmental pollution and carbon emissions with strategies for sustainability in the COVID-19 era. Science of The Total Environment, 809(151657), 1-16.