مطالعه مروری بر انواع روش‌های نوین تشخیص خرابی در روسازی بر اساس قابلیت پیزو-مقاومتی در بتن خودحسگر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، دانشکده عمران، دانشگاه تربیت دبیر رجایی، تهران، ایران

2 دانشجوی کارشناسی ارشد، گروه ژئوتکنیک، دانشکده عمران، دانشگاه تربیت دبیر رجایی، تهران، ایران

10.22034/road.2022.360617.2087

چکیده

نظارت و رصد سلامت سازه در قبل و حین مرحله‌ی بهره‌برداری به ناظران این امکان را می‌دهد که نسبت به خسارات مالی و جانی احتمالی بتوانند رویارویی بهتری با آنها داشته باشند برای تشخیص خرابی در سازه‌های بتنی از جمله روسازی‌ها نیاز به بررسی سطحی و زیر سطحی است. در این مقاله سعی شده مرور خلاصه ای از چند روش توسعه یافته شده بر مبنای خاصیت پیزو مقاومتی در بتن ها به منظور ارزیابی سطح خسارت در بتن از دیدگاه مقاومت شکست، روش الکترودهای متوالی، روش مش مقاومتی و روش توموگرافی مورد نظر این تحقیق بود.. برای این منظور رایج ترین بتن های خود حسگر ساخته شده با روش های تشخیص خرابی متفاوت, برای شرایط بارگذاری مختلف مورد مطالعه و بررسی قرار گرفت. در نهایت به موضوع استفاده از این بتن های خودحسگر در نظارت بر وضعیت خرابی در روسازی‌ها پرداخته شده است که طبق ارزیابی‌های صورت گرفته این روش ها برای نظارت بر وضعیت خرابی روسازی‌ها مناسب هستند. همچنین در انتها به بررسی روش توموگرافی و استفاده از آن در تشخیص خرابی در یک دال بتنی تحت بارگزاری تسریع شونده پرداخته شد نتایج نشان داد روش نظارت تصویری توانایی دقیقی در تشخیص خرابی حتی از زیر سطح رویه بتنی و قبل از اینکه خرابی به روی سطح بیاید و دیده شود، ارائه می دهد. از این رو دقت و پیشبینی اینگونه روش ها قطعا کلید توسعه زیرساخت های هوشمند و راه های آینده خواهد بود.

کلیدواژه‌ها


Abry, J. C. et al. (2001) ‘In-situ monitoring of damage in CFRP laminates by means of AC and DC measurements’, Composites Science and Technology, 61(6), pp. 855–864.
Doi: https://doi.org/10.1016/S0266-3538(00)00181-0.
-Adresi, M., Hassani, A., Javadian, S., et al., (2016), "Determining the Surfactant Consistent with Concrete in order to Achieve the Maximum Possible Dispersion of Multiwalled Carbon Nanotubes in Keeping the Plain Concrete Properties", Journal of Nanotechnology. Edited by B. I. Yakobson. Hindawi Publishing Corporation, 2016, pp. 1–9.
Doi: 10.1155/2016/2864028.
-Adresi, M., Hassani, A., Mohammad reza Soleimani, et al., (2016), ‘Investigation of carbon nanotube and energy levels effects on Self-sensing Concrete Sensor Performance in Dynamic Loading Pattern (In Persian)’, Transportation Infrastructures Engineering Journal, 2(3),
pp. 17–34.
Doi: 10.22075/JTIE.2016.509.
-Adresi, M. et al., (2017), ‘A study of the main factors affecting the performance of self-sensing concrete’, Advances in Cement Research, 29(5). Doi: 10.1680/jadcr.15.00147.
-Adresi, M., (2017), "Concrete pavement prediction life model based on electrical response of concrete-CNTs sensors under fatigue loading", (March), Doi: 10.6092/polito/porto/2687875.
-Adresi, Mostafa, Ahmadi, A., Ahamadi, M., et al., (2017), "Methodology of Damage Detection and Weight in Motion Performance under Traffic Loading Based on Self-Sensing Concrete (In Persian)", Quarterly Journal of Transportation Engineering, 9(2), pp. 139–154.
Doi: 20.1001.1.20086598.1396.9.2.1.9.
-Adresi, Mostafa, Ahmadi, A., Ahmadi, M., et al. (2017), "Methodology of damage detection and weight in motion performance under traffic loading in based selfon self-sensing concrete", Quarterly Journal of Transportation Engneering, 9(2), pp. 139–154.
Doi: 20.1001.1.20086598.1396.9.2.1.9.
-Adresi, M. et al., (2019), "Concrete pavement prediction life model based on self-sensing concrete ability", in 3th national conference on concrete pavements (3NCCP), Tehran-Iran.
-Adresi, M. et al., (2021), "A Novel Life Prediction Model Based on Monitoring Electrical Properties of Self-Sensing Cement-Based Materials", Applied Sciences, 11(5080).
Doi.org/10.3390/app11115080.
-Adresi, M., Hassani, A. and Yazdian, A., (2017), "Construction and evaluation of damage detection concrete sensor consistent with concrete pavement (In Persian)", Modares Civil Engneering Journal, 17(2), pp. 1–9.
-Adresi, M. and Yekrangnia, M., (2021), "Properties and mechanisms of the self-sensing piezoelectric concrete sensor for structural health monitoring (In Persian)", Journal of Structural and Construction Engineering, 8(9).
Doi: 10.22065/JSCE.2020.232648.2150.
-Angelidis, N. and Irving, P. E., (2007), "Detection of impact damage in CFRP laminates by means of electrical potential techniques", Composites Science and Technology, 67(3), pp. 594–604.
Doi: org/10.1016/j.compscitech.2006.07.033.
-Angelidis, N., Khemiri, N. and Irving, P. E., (2004), "Experimental and finite element study of the electrical potential technique for damage detection in {CFRP} laminates", Smart Materials and Structures. {IOP} Publishing, 14(1),
pp. 147–154.
Doi: 10.1088/0964-1726/14/1/014.
-Ceysson, O., Salvia, M. and Vincent, L., (1997), "Damage mechanisms characterization of carbon fiber/epoxy composite laminates by both electrical resistance measurements and acoustic emission analysis", NDT and E International, 30(2), p. 107.
-Chung, D. D., (2005) "Dispersion of short fibers in cement", Journal of materials in civil engineering, American Society of Civil Engineers, 17(4), pp. 379–383.
-Chung, D. D. L., (1987), "Exfoliation of graphite", Journal of Materials Science, 22(12),
pp. 4190–4198. doi: 10.1007/BF01132008.
-Chung, D. D. L., (2007), "Damage detection using self-sensing concepts", Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering. IMECHE, 221(4), pp. 509–520.
Doi: 10.1243/09544100JAERO203.
-Chung, D. D. L. and Wang, S., (2003),
‘Self-sensing of Damage and Strain in Carbon Fiber Polymer-Matrix Structural Composites by Electrical Resistance Measurement’, Polymers and Polymer Composites. SAGE Publications Ltd STM, 11(7), pp. 515–525.
Doi: 10.1177/096739110301100701.
-DiFonzo, N. and Bordia, P., (1998), ‘Reproduced with permission of the copyright owner . Further reproduction prohibited without’, Journal of Allergy and Clinical Immunology, 130(2), p. 556.
-Downeya, A. et al., (2017), "Damage detection, localization and quantification in conductive smart concrete structures using a resistor mesh model’, Engineering Structures journal, 148, pp. 924–935.
Ferrara, L. and Meda, A. (2006) ‘Relationships between fibre distribution, workability and the mechanical properties of SFRC applied to precast roof elements’, Materials and Structures. Springer, 39(4), pp. 411–420.
-Gopalakrishnan, K. et al., (2017),
"Deep Convolutional Neural Networks with transfer learning for computer vision-based data-driven pavement distress detection’, Construction and Building Materials", 157, pp. 322–330.
Doi:.org/10.1016/j.conbuildmat.2017.09.110.
-Gupta, S. et al., (2021), "In situ crack mapping of large-scale self-sensing concrete pavements using electrical resistance tomography", Cement and Concrete Composites. Elsevier Ltd, 122,
p. 104154.
Doi:10.1016/j.cemconcomp.2021.104154.
-Hallaji, M., Seppänen, A. and Pour-Ghaz, M., (2014), "Electrical impedance tomography-based sensing skin for quantitative imaging of damage in concrete", Smart Materials and Structures. {IOP} Publishing, 23(8), p. 85001.
Doi: 10.1088/0964-1726/23/8/085001.
-Han, B., Guan, X. and Ou, J., (2007), "Electrode design, measuring method and data acquisition system of carbon fiber cement paste piezoresistive sensors", Sensors and Actuators A: Physical, 135(2), pp. 360–369.
Doi: https://doi.org/10.1016/j.sna.2006.08.003.
-Hosseini Lavassani, S. H., Mardani, M. and Adresi, M., (2022), ‘Piezoresistivity and Mechanical Properties of Self- Sensing Cnt Cementitious Nanocomposite S: Optimizing the Effects of Cnt Dispersion and Surfactants’, Construction and Building Materials. Elsevier Ltd, (April), p. 128127. Doi: 10.2139/ssrn.4078405.
-Hugenschmidt, J., Partl, M. N. and de Witte, H., (1998), "GPR inspection of a mountain motorway in Switzerland", Journal of Applied Geophysics, 40(1), pp. 95–104.
Doi: org/10.1016/S0926-9851(97)00032-3.
-Kaddour, A. S. et al., (1994), "Electrical resistance measurement technique for detecting failure in CFRP materials at high strain rates", Composites Science and Technology, 51(3),
pp. 377–385.
Doi: org/10.1016/0266-3538(94)90107-4.
-Kemp, M., (1994), "Self-sensing composites for smart damage detection using electrical properties", in Proc.SPIE.
Doi: 10.1117/12.184809.
-Kong, X. and Li, J., (2018), "Vision-Based Fatigue Crack Detection of Steel Structures Using Video Feature Tracking", Computer-Aided Civil and Infrastructure Engineering, 33(9),
pp. 783–799.
Doi: org/10.1111/mice.12353.
-Kupke, M., Schulte, K. and Schüler, R., (2001), "Non-destructive testing of FRP by d.c. and a.c. electrical methods", Composites Science and Technology, 61(6), pp. 837–847.
doi: org/10.1016/S0266-3538(00)00180-9.
-Leong, C.-K., Wang, S. and Chung, D. D. L., (2006), "Effect of through-thickness compression on the microstructure of carbon fiber polymer-matrix composites", as studied by electrical resistance measurement’, Journal of Materials Science, 41(10), pp. 2877–2884.
Doi: 10.1007/s10853-005-5121-7.
-Mei, Z. et al., (2002), "Mechanical damage and strain in carbon fiber thermoplastic-matrix composite", sensed by electrical resistivity measurement’, Polymer Composites, 23(3),
pp. 425–432. doi: Doi.org/10.1002/pc.10444.
-Mullen, M. (2001) ‘Special Inspections of Paved Areas during Excessive Heat Periods", Central Region Airport Certification Bulletin, Federal Aviation Administration, Central Region, Airports Division, Kansas City, MO.
-Peled, A. et al., (2001), "Electrical impedance spectra to monitor damage during tensile loading of cement composites", ACI Materials Journal, American Concrete Institute, 98(4), pp. 313–322.
-"Piezoresistivity in continuous carbon", fiber.pdf’ (no date).
-Prabhakaran, R., (1990), "Damage assessment through electrical resistance measurement in graphite fiber-reinforced composites", Experimental Techniques, 14(1), pp. 16–20.
Doi: 10.1111/j.1747-1567.1990.tb01059.x.
-Radopoulou, S. C. and Brilakis, I., (2015), "Patch detection for pavement assessment", Automation in Construction, 53, pp. 95–104.
Doi: https://doi.org/10.1016/j.autcon.2015.03.010.
-Reza, F. et al., (2001), "Volume electrical resistivity of carbon fiber cement composites", Materials Journal, 98(1), pp. 25–35.
-Reza, F. et al., (2003), "Resistance changes during compression of carbon fiber cement composites", Journal of Materials in Civil Engineering. American Society of Civil Engineers, 15(5),
pp. 476–483.
-Reza, F. A., Yamamuro, J. A. and Batson, G. B., (2004), "Electrical resistance change in compact tension specimens of carbon fiber cement composites", Cement & Concrete Composites, 26, pp. 873–881.
-Schulte, K. and Baron, C., (1989), "Load and failure analyses of CFRP laminates by means of electrical resistivity measurements", Composites Science and Technology, 36(1).
-Seppänen, A., Hallaji, M. and Pour-Ghaz, M., (2017), "A functionally layered sensing skin for the detection of corrosive elements and cracking", Structural Health Monitoring, 16(2), pp. 215–224. Doi: 10.1177/1475921716670574.
-Shah, S. P., Swartz, S. E. and Ouyang, C., (1995), "Fracture mechanics of concrete: applications of fracture mechanics to concrete", rock and other quasi-brittle materials. John Wiley & Sons.
-Shi, Z. Q. and Chung, D. D. L., (1999), "Carbon fiber-reinforced concrete for traffic monitoring and weighing in motion", Cement and Concrete Research, 29(3), pp. 435–439.
Doi: 10.1016/S0008-8846(98)00204-X.
-Sugita, M., Yanagida, H. and Muto, N., (1995), "Materials design for self-diagnosis of fracture in {CFGFRP} composite reinforcement", Smart Materials and Structures. {IOP} Publishing, 4(1A), pp. A52-A57.
Doi: 10.1088/0964-1726/4/1a/007.
-Tallman, T. N. et al., (2014), "Damage detection and conductivity evolution in carbon nanofiber epoxy via electrical impedance tomography", Smart Materials and Structures. {IOP} Publishing, 23(4), p. 45034.
Doi: 10.1088/0964-1726/23/4/045034.
 
 
 
-Tombler, T. W. et al., (2000), "Reversible electromechanical characteristics of carbon nanotubes underlocal-probe manipulation", Nature. Nature Publishing Group, 405(6788),
pp. 769–772.
-Wang, D. and Chung, D. D. L., (2006), "Comparative evaluation of the electrical configurations for the two-dimensional electric potential method of damage monitoring in carbon fiber polymer{\textendash}matrix composite", Smart Materials and Structures. {IOP} Publishing, 15(5), pp. 1332–1344.
Doi: 10.1088/0964-1726/15/5/023.
-Wang, D. and Chung, D. D. L., (2007), "Through-thickness stress sensing of a carbon fiber polymer{\textendash}matrix composite by electrical resistance measurement", Smart Materials and Structures. {IOP} Publishing, 16(4), pp. 1320–1330.
Doi: 10.1088/0964-1726/16/4/046.
-Wang, S., Chung, D. D. L. and Chung, J. H., (2005), "Effects of composite lay-up configuration and thickness on the damage self-sensing behavior of carbon fiber polymer-matrix composite", Journal of Materials Science, 40(3), pp. 561–568. Doi: 10.1007/s10853-005-6289-6.
-Wang, X. and Chung, D. D. L., (1999), "Fiber breakage in polymer-matrix composite during static and fatigue loading, observed by electrical resistance measurement", Journal of Materials Research. Cambridge University Press, 14(11),
pp. 4224–4229. Doi: 10.1557/JMR.1999.0572.
-Zhao, H. et al., (2014), "Pavement Condition Monitoring System at Shanghai Pudong International Airport", in Pavement Materials, Structures, and Performance, pp. 283–295.
Doi: 10.1061/9780784413418.029.