تشخیص و طبقه‌بندی خودکار بافت خرابی‌های روسازی آسفالتی بر پایه تبدیل موجک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی ارشد، گروه عمران، دانشکده مهندسی، دانشگاه فردوسی مشهد، مشهد، ایران

2 استادیار، گروه عمران، دانشکده مهندسی، دانشگاه فردوسی مشهد، مشهد، ایران

10.22034/road.2021.64977

چکیده

ارزیابی خرابی­های روسازی یکی از مهم­ترین عناصر سیستم­های مدیریت روسازی جهت تعیین راهکار بهینه عملیات ترمیم و نگهداری راه محسوب می­شود. در دو دهه اخیر، تحقیقات گسترده­ای پیرامون توسعه روش­های خودکار جهت شناسایی
خرابی­های روسازی انجام گرفته است. اغلب این روش­ها بر پایه بینایی ماشین و فنون پردازش تصویر می­باشند. یکی از
مهم­­ترین اجزای تشکیل­دهنده سیستم­های بینایی ماشین، فرآیند استخراج ویژگی است. در سال­های اخیر روش­های آنالیز چنددقته هم­چون تبدیل موجک، ابزار مناسبی جهت تجزیه و تحلیل ویژگی­های بافتی تصویر با سرعت و دقتی قابل قبول، فراهم آورده است. در این پژوهش، پس از برداشت تصاویر شش گروه مختلف از خرابی­های سطح روسازی آسفالتی در شرایط کنترل شده، به منظور تشخیص و طبقه­­بندی آن­ها، از 4 نوع تبدیل چنددقته دوبعدی شامل موجک گسسته
Haar، موجک گسسته Daubechies 3، موجک گسسته Coiflet 1 و موجک مختلط دو درختی استفاده گردید. پس از تجزیه تصاویر توسط اعمال تبدیل­های مذکور، شاخص­های آماری مرتبه اول بر پایه خصوصیات هیستوگرام و آمارگان مرتبه دوم مبتنی بر ماتریس هم­رخداد سطوح خاکستری، به منظور آنالیز آماری بافت ­باند­های فرکانسی موجک­ها به­کارگیری گردید. نتایج حاصل از طبقه­بندی تصاویر خرابی بر اساس روش کمینه فاصله ماهالانوبیس، حاکی از آن است که شاخص­های آماری مرتبه دوم مستخرج از زیرباندهای تبدیل موجک مختلط دو­درختی و موجک گسسته Haar به ترتیب با دقت کلاس­بندی 99 درصد و 95 درصد، نسبت به سایر الگوریتم­های توصیف بافت استفاده شده در این تحقیق، در شناسایی انواع خرابی نتایج بهتری به دنبال داشته است. هم­چنین شاخص­های آماری حاصل از ماتریس هم­رخداد سطوح خاکستری، به طور میانگین با دقت عملکردی 87 درصد، عملکرد برتری نسبت به خصوصیات آماری هیستوگرام در کلاسه­بندی تصاویر خرابی دارا می­باشند.

کلیدواژه‌ها


-شهابیان مقدم، ر.، (1396)، "تشخیص و طبقه­بندی خودکار خرابی­های روسازی آسفالتی بر پایه آنالیز بافت تصویر در حوزه مکان و تبدیل"، پایان­نامه کارشناسی ارشد، اساتید راهنما: سیدعلی صحاف و ابوالفضل محمدزاده مقدم، دانشکده مهندسی، دانشگاه فردوسی مشهد، مشهد، ایران.
-شهابیان مقدم، ر.، صحاف، س.ع، محمدزاده مقدم، ا. و پوررضا، ح.ر.، (1396)، "مقایسه روش­های آنالیز بافت تصویر به منظور شناسایی و طبقه بندی خودکار خرابی‏های روسازی آسفالتی" ، فصلنامه مهندسی زیر ساخت های حمل و نقل، دوره سوم، شماره سوم، ص. 1-22.
-سمنارشاد، مح.س. کاووسی، ا. و صفارزاده، م.، (1396)،
"­ارائه مدل نگهداری و بهسازی شبکه راه‌های اصلی با به کارگیری تحلیل هزینه چرخه عمر -مطالعه موردی استان خراسان جنوبی"، فصلنامه مهندسی حمل و نقل، دوره نهم، شماره دوم، ص. 209-230.
-Aggarawal, N. and Agrawal, R. K., (2012), “First and second order statistics features for classification of magnetic resonance brain images”, Journal of Signal and Information Processing, No. 3, pp. 146-153.
-Cheng, H. D., Glazier, C. and Hu, Y. G., (1999), “Novel approach to pavement cracking detection based on fuzzy set theory”, Journal of Computing in Civil Engineering, Vol. 13, No. 3, pp. 270-280.
-Chua, K. M. and Xu, L., (1994), “Simple procedure for identifying pavement distresses from video images”, Journal of Transportation Engineering, Vol. 120, No. 3, pp. 412-431.
-Dettori, L. and Semlera, L., (2007), “A comparison of wavelet, ridgelet, and curvelet based texture classification algorithms in computed tomography”, Computers in Biology and Medicine, Vol. 37, No. 4, pp. 486-498.
-Kingsbury, N. G., (1998), “The dual-tree complex wavelet transform: a new technique for shift invariance and directional filters”, Proceedings of the IEEE Digital Signal Processing Workshop, No. 98, pp. 9-12.
-Lee, D., (2003), “A robust position invariant artificial neural network for digital Pavement crack analysis”, Technical report, TRB Annual Meeting, 2009, Washington, DC, USA.
-Mallat, S., (1989), “A theory for multiresolution signal decomposition: the wavelet representation”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 11,
No. 7, pp. 674-693 .
-Moghadas Nejad, F. and Zakeri, H., (2011), “An optimum feature extraction method based on Wavelet–Radon Transform and Dynamic Neural Network for pavement distress classification”, Expert Systems with Applications,Vol. 38, No. 3, pp. 9442-9460.
-Moghadas Nejad, F. and Zakeri, H., (2011), “A comparison of multi-resolution methods for detection and isolation of pavement distress”, Expert Systems with Applications, Vol. 38, No. 3, pp. 2857-2872.
-Moghadas Nejad, F. and Zakeri, H., (2011), “An expert system based on wavelet transform and radon neural network for pavement distress classification”, Expert Systems with Applications, Vol. 38, No. 3, pp. 7088-7101.
-Nallamothu, S. and Wang, K. C. P., (1996), “Experimenting with recognition accelerator for pavement distress identification”, Transportation Research Record, Vol. 1536, pp. 130-135.
-Ouyang, A., Dong, Q., Wang, Y. and Liu, Y., (2014), “The classification of pavement crack image based on beamlet algorithm”, in: 7th IFIP WG 5.14 international conference on computer and computing technologies in agriculture, CCTA 2013.
-Rosa, P., (2012), “Automatic pavement crack detection and classification system”, Transportation Research Board, National Research Council, Washington, D.C., pp. 57-65.
-Singh, R., (2016), “A comparison of gray-level run length matrix and gray-level co-occurrence matrix towards cereal grain classification”, International Journal of Computer Engineering & Technology (IJCET), Vol. 7, No. 6, pp. 9-17.
-Srinivasan, G. N. and Shobha, G., (2008), “Statistical texture analysis”, proceedings of world academy of science, engineering and technology, No. 36, pp. 207-213.
-Tang, X., (1998), “Texture information in run-length matrices”, IEEE Transactions on Image Processing, Vol. 7, No. 11, pp. 1602-1609.
-Wang, K. C. P., Li, Q. J., Yang, G., Zhan, Y. and Qiu, Y., (2015), “Network level pavement evaluation with 1 mm 3D survey system”, journal of traffic and transportation egineering, Vol. 2, No. 6, pp. 391-398.
-Wang, K. C. P., (2009), “Wavelet-based pavement distress image edge detection with Trous algorithm”, Transportation Research Record: Journal of the Transportation Research Board, Vol. 2024, pp.73-81.
-Wang, W., Watkins, H. and Kuchikulla, K., (2002), “Digital distress survey of airport pavement surface”, Federal aviation administration airport technology transfer conference.
-Wimmer, G., Tamaki, T., Hafner, M., Yoshida, S., Tanaka, S. and Uhl, A., (2016), “Directional wavelet based features for colonic polyp classification”, Medical Image Analysis, Vol. 31, pp. 16-36.
-Zakeri, H., Moghadas Nejad, F. and Fahimifar, A., (2016), “Image based techniques for crack detection, classification and quantification in asphalt pavement: a review”, Archives of Computational Methods in Engineering, pp. 1-43.
-Zayed, N. and Elnemr, H., (2015), “Statistical analysis of haralick texture features to discriminate lung abnormalities”, International Journal of Biomedical Imaging, Vol. 2015, Article ID 267807, pp. 1-7.
-Zhu, Z., Song, R. and Chen, S., (2016), “A novel method of image features extraction and application”, 31st Youth Academic Annual Conference of Chinese Association of Automation, Wuhan, China.
-Zou, Q., Cao, Y., Li, Q., Mao, Q. and Wang, S., (2008), “Cracktree: automatic crack detection from pavement images”, Pattern Recognition Letters, Vol. 33, No. 3, pp. 227–238.