روش‌های بهبود مقاومت بتن در مقابل حملات سولفاتی (مطالعه موردی)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، دانشکده عمران، گروه ژئوتکنیک و آب، دانشگاه تربیت دبیر شهید رجایی، تهران، ایران

2 دانشجوی کارشناسی ارشد، دانشکده عمران، گروه ژئوتکنیک و آب، دانشگاه تربیت دبیر شهید رجایی، تهران، ایران

چکیده

هدف این مطالعه ارزیابی تخریب بتن، با در نظر گرفتن حملات سولفاتی و ارائه رویکرد مناسب برای مقابله با این پدیده است. اثرات شرایط رویارویی، مانند غلظت محلول، دما، و شرایط غوطه وری، نوع سیمان و نسبت آب به سیمان مورد بررسی قرار گرفتند. به علاوه نشان داده شده است که مواد سیمانی مکمل و سیمان پرتلند معمولی با بهبود خواص ملات هیدراته شده، حمله خارجی سولفاتی را کاهش می‌دهند. این مطالعه یک بررسی جامع از عملکرد بهبودی خاکستر بادی ، سرباره، دوده‌ی سیلیس و متاکائولین در برابر حمله سولفاتی را نیز ارائه می‌کند. نرخ جایگزینی بیش از 10 درصد خاکستر بادی، بیش از 20 درصد سرباره، 3-20 درصد دوده سیلیس و 5-25 درصد متاکائولین برای بهبود مقاومت در برابر حمله سولفاتی در سولفات سدیم یافت شده است. افزایش نرخ دوز باعث بهبود عملکرد کلی برای همه‌ی SCM ها به جز دوده‌ی سیلیس و خاکستر بادی رده‌ی C می‌شود. در سولفات منیزیم، در نرخ‌های جایگزینی بالاتر، عملکرد برای متاکائولین و دوده سیلیس ضد و نقیض است همانطور که با افزایش انبساط نسبت به یک کنترل نشان داده شده است. به طور کلی، خاکستر بادی، سرباره، دوده سیلیس و متاکائولین می‌توانند در کاهش حمله سولفات موثر باشند، اما عملکرد آن‌ها به نرخ جایگزینی، قرار‌گیری در معرض کاتیون سولفات و خواص شیمیایی و فیزیکی آن‌ها بستگی دارد.

کلیدواژه‌ها


-Aguayo, J., (2007). External sulfate attack of concrete: an accelerated test method, mechanisms, and mitigation techniques. The University of Texas at Austin. 2007. Doctoral dissertation.
-Al-Akhras, N. M. (2006). Durability of metakaolin concrete to sulfate attack, Cem. Concr. Res, 36(9), 1727–1734.
-Al-Amoudi, O. S. B. (1998). Sulfate attack and reinforcement corrosion in plain and blended cements exposed to sulfate environments, Build. Environ, 33(1), 53–61.
-Al-Amoudi, O. S. B. (2002). Attack on plain and blended cements exposed to aggressive sulfate environments, Cem. Concr. Compos, 24, “(3–4)" # "305–316.”
-Al-Dulaijan, S. U., Maslehuddin, M., Al-Zahrani, M. M., Sharif, A. M., Shameem, M., & Ibrahim, M. (2003). Sulfate resistance of plain and blended cements exposed to varying concentrations of sodium sulfate. Cement and Concrete Composites, 25(4), 429–437. https://doi.org/https://doi.org/10.1016/S0958-9465(02)00083-5
-Al-Gahtani, R., A., & Al-Saadoun, S. (1994). Rebar corrosion and sulfate resistance of blast-furnace slag cement. Journal of Materials in Civil Engineering, 6–2.
-Aleem, S. A. E., Heikal, M., & Morsi, W. M. (2014). Hydration characteristic, thermal expansion and microstructure of cement containing nano-silica, Constr. Build. Mater, 59, 151–160.
-ASTM C1012 / C1012M-18b., Standard test method for length change of hydraulic-cement mortars exposed to a sulfate solution. (2018). ASTM International.
-ASTM C150 / C150M-20. Standard specification for portland cement. (2020). ASTM International, 25, “(4–5)" # "429–437.”
Atahan, H. N., & Arslan, K. M. (2016). Improved durability of cement mortars exposed to external sulfate attack: the role of nano & micro additives. Sustainable Cities and Society, 22, 40–48.
-Barcelo, L. (2014). A modified ASTM C1012 procedure for qualifying blended cements containing limestone and SCMs for use in sulfate-rich environments, Cem. Concr. Res, 63, 75–88.
-Björnström, J. (2004). Accelerating effects of colloidal nano-silica for beneficial calcium–silicate–hydrate formation in cement. Chem. Phys. Lett, 392(1), 242–248.
-Bonen, D., & Cohen, M. D. (1992). Magnesium sulfate attack on portland cement paste-I. In Microstructural analysis, Cement and Concrete Research (Vol. 22, Issue 1).
-Brown, P., & Badger, S. (2000). The distributions of bound sulfates and chlorides in concrete subjected to mixed NaCl, MgSO4, Na2SO4 attack, Cem. Concr. Res, 30(10), 1535–1542.
-Cao, H. (1997). The effect of cement composition and pH of environment on sulfate resistance of portland cements and blended cements, Cem. Concr. Compos, 19(2), 161–171.
-Controlling aluminate phase hydration for sulfate resistance of Portland– limestone cements. (n.d.). Proceedings of the Institution of Civil Engineers Construction Materials, 1–13.
-Dhole, R. (2013). Characterization of fly ashes for sulfate resistance, ACI Mater. J, 110(2).
-Dhole, R., Thomas, M. D. A., & Folliard, K. (2013). Characterization of Fly Ashes for Sulfate Resistance. ACI Mater. J, 110(2).
-Diab, A. M. (2012). Guidelines in compressive strength assessment of concrete modified with silica fume due to magnesium sulfate attack, Constr. Build. Mater, 36, 311–318.
-Diamond, S. (1996). Delayed ettringite formation—processes and problems, Cem. Concr. Compos, 18(3), 205–215.
-Diamond, S., & Lee, R. (1999). Microstructural alterations associated with sulfate attack in permeable concretes, American Ceramic Society Inc, Materials Science of Concrete: Sulfate Attack Mechanisms(USA), 123–173.
-Drimalas, T. (2007). Laboratory and field evaluations of external sulfate attack. The University of Texas at Austin. 2007. Doctoral dissertation.
-Drimalas, T. (2011). Sulfate resistacne of concrete exposed to external sulfate attack. Texas Department of Transportation: Austin, Texas.
-Dunstan, E. R. (1980). A possible method for identifying fly ashes that will Improve. In the sulfate resistance of concrete, Cement Concrete and Aggregates (Vol. 2, Issue 1, 20–30.
-Ekolu, S. O., & Ngwenya, A. (2014). Sulphate resistance of concrete made with moderately high alumina slag. Constr. Mater. Struct.
-Elahi, M. M. A., & Shearer, C. R. (n.d.). Improving the sulfate attack resistacne of portland-limestone cement through sulfate optimization: A calorimetrybased approach. Conferecne proceding. Fifth International Conference on Sustainable Construction Materials and Technologies. http://www.claisse.info/Proceedings.htm.
-Geiseler, J., Kollo, H., & Lang, E. (1995). Influence of blast furnace cements on durability of concrete structures. Materials Journal, 92(3), 252–257.
-Girardi, F., Vaona, W., & Maggio, R. D. (n.d.). Resistance of different types of concretes to cyclic sulfuric acid and sodium sulfate attack, Cem. Concr. Compos. 32 (2010) 595–602.
-Hansen, W. (1963). Crystal growth as a source of expansion in Portland cement concrete. In Proc. ASTM.
-Hansen, W. (1966). Attack on Portland Cement Concrete by Alkali Soils and Waters-A Critical Review, Highway Res. Rec, 113.
-Hanson, W. (1968). Chemistry of sulfate-resisting portland cement. University of Toronto Press.
-Higgins, D., & Crammond, N. (2003). Resistance of concrete containing ggbs to the thaumasite form of sulfate attack, Cem. Concr. Compos, 25(8), 929.
-Higgins, D. D. (2003). Increased sulfate resistance of ggbs concrete in the presence of carbonate. In Cem. Concr. Compos (Vol. 25, Issue 8, pp. 913–919).
-Hooton, R. (1993). Influence of silica fume replacement of cement on physical properties and resistance to sulfate attack, freezing and thawing, and alkalisilica reactivity. Materials Journal, 90(2), 143–151.
-Hou, P. (2015). Characteristics of surface-treatment of nano-SiO2 on the transport properties of hardened cement pastes with different water-tocement ratios, Cem. Concr. Compos, 55, 26–33.
-Huang, Q. (n.d.). Effect of nanosilica on sulfate resistance of cement mortar under partial immersion, Constr. Build. Mater, 231, 117180.
-Kandasamy, S., & Shehata, M. H. (2014). Durability of ternary blends containing high calcium fly ash and slag against sodium sulphate attack, Constr. Build. Mater, 53, 267–272.
-Khatib, J., & Wild, S. (1998). Sulphate resistance of metakaolin mortar, Cem. Concr. Res, 28(1), 83–92.
-Khatri, R., Sirivivatnanon, V., & Yang, J. (1997). Role of permeability in sulphate attack, Cem. Concr. Res, 27(8), 1179–1189.
-Kumar, M. P., & Monterio, P. J. (2006). Concrete: microstructure, properties and materials, Indian Edition, 17–39.
-Lee, H. (2005). The formation and role of ettringite in Iowa highway concrete deterioration, Cem. Concr. Res, 35(2), 332–343.
-Lee, S., Moon, H., & Swamy, R. (2005). Sulfate attack and role of silica fume in resisting strength loss, Cem. Concr. Compos, 27(1), 65–76.
-Li, H. (2004). Microstructure of cement mortar with nano-particles, Compos. B Eng, 35(2), 185–189.
-Ma, B. (2006). Thaumasite formation in a tunnel of Bapanxia Dam in Western China, Cem. Concr. Res, 36(4), 716–722.
-Mangat, P. S., & Khatib, J. M. (1996). Influence of fly ash, silica fume, and slag. In on sulfate resistance of concrete, Fule and Energy Abstract (Vol. 6, Issue 5, p. 423).
-Mehta, P. (1983). Pozzolanic and cementitious by-products as mineral admixtures for concrete: A critical review, The use of fly ash, silica fume, slag and other mineral by-products in concrete. ACI Special Publication, Detroit.
-Mehta, P. (1986). Effect of fly ash composition on sulfate resistance of cement. Journal Proceedings, 83(6).
Mehta, P. (1992). Sulfate attack on concrete–a critical review. Mater. Sci. Concr, 105.
-Mehta, P. K., & J, P. (2017). Monteiro, Concrete: microstructure, properties, and materials.
-Mingyu, H., Fumei, L., & Mingshu, T. (2006). The thaumasite form of sulfate attack in concrete of Yongan Dam, Cem. Concr. Res, 36(10).
-Monteiro, P. J., & Kurtis, K. E. (2003). Time to failure for concrete exposed to severe sulfate attack, Cem. Concr. Res, 33(7),
987–993.
-Mukharjee, B. B., & Barai, S. V. (2014). Assessment of the influence of nano-silica on the behavior of mortar using factorial design of experiments, Constr. Build. Mater, 68, 416–425.
-Nazari, A., & Riahi, S. (2011). The effects of SiO2 nanoparticles on physical and mechanical properties of high strength compacting concrete, Compos. B Eng, 42(3), 570–578.
-Neville, A. M. (1995). Properties of Concrete IV. IVPrentice Hall, Harlow, UK.
Nielsen, J. (1966). Investigation of resistance of cement paste to sulfate attack, Highway Res. Rec, 113.
-Nosouhian, F. (2019). Effects of slag characteristics on sulfate durability of Portland cement-slag blended systems, Constr. Build. Mater, 229, 116882.
-Park, Y. S. (1999). Strength deterioration of high strength concrete in sulfate environment, Cem. Concr. Res, 29(9), 1397–1402.
-Qiao, D., Matsushita, T., Maenaka, T., & Shimamoto, R. (2021). Long-term performance assessment of concrete exposed to acid attack and external sulfate attack. Journal of Advanced Concrete Technology, 19(7), 796–810.
https://doi.org/10.3151/jact.19.796
-Qing, Y. (2007). Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume, Constr. Build. Mater, 21(3), 539–545.
-Rahman, M., & Bassuoni, M. (2014). Thaumasite sulfate attack on concrete: Mechanisms, influential factors and mitigation, Constr. Build. Mater, 73, 652–662.
-Ramyar, K., & Inan, G. (2007). Sodium sulfate attack on plain and blended cements, Build. Environ, 42(3), 1368–1372.
-Rasheeduzzafar. (1992). Influence of cement composition on concrete durability. ACI Mater. J, 89(6), 574–586.
-Sahmaran, M. (2007). Effects of mix composition and water–cement ratio on the sulfate resistance of blended cements, Cem. Concr. Compos, 29(3), 159–167.
-Sahu, S., & N. (2004). Thaulow, Delayed ettringite formation in Swedish concrete railroad ties, Cem. Concr. Res, 34(9),
1675–1681.
-Said, A. M. (2012). Properties of concrete incorporating nano-silica, Constr. Build. Mater, 36, 838–844.
-Santhanam, M., Cohen, M. D., & Olek, J. (2001). Sulfate attack research — whither now? Cement and Concrete Research, 31(6), 845–851. https://doi.org/https://doi.org/10.1016/S0008-8846(01)00510-5
-Santhanam, M., Cohen, M. D., & Olek, J. (2003). Effects of gypsum formation on the performance of cement mortars during external sulfate attack, Cem. Concr. Res, 33(3), 325–332.
-Shi, Z. (2019). Sulfate resistance of calcined clay–limestone–portland cements, Cem. Concr. Res, 116, 238–251.
-Taylor, H. (1994). Sulfate reactions in concrete–microstructural and chemical aspects, Ceram. Trans, 40, 61.
-Thomas, M. (2008). Diagnosing delayed ettringite formation in concrete structures, Cem. Concr. Res, 38(6), 841–847.
Thomas, M. D. (1999). Use of ternary cementitious systems containing silica fume and fly ash in concrete, Cem. Concr. Res, 29(8), 1207–1214.
-Thorvaldson, T. (1952). Chemical aspects of the durability of cement products. Proceedings of The.
-Tian, B., & Cohen, M. D. (2000). Does gypsum formation during sulfate attack on concrete lead to expansion?, Cem. Concr. Res, 30(1), 117–123.
-Tikalsky, P. (1993). Influence of fly ash on the sulfate resistance of concrete. Materials Journal, 89(1), 69–75.
-Tikalsky, P., Carrasquillo, R., & Snow, P. (1992). Sulfate resistance of concrete containing fly ash (Vol. 131, pp. 255–266). Specail Publication.
-Tobón, J. I. (n.d.). Mineralogical evolution of portland cement blended with silica nanoparticles and its effect on mechanical strength, Constr. Build. Mater, 36, 736–742.
-Tobón, J. I., Payá, J., & Restrepo, O. J. (2015). Study of durability of portland cement mortars blended with silica nanoparticles, Constr. Build. Mater, 80, 97.
-Wee, T. (2000). Sulfate resistance of concrete containing mineral admixtures. Materials Journal, 97(5), 536–549.
-Wee, T. H., Suryavanshi, K., Wong, S. F., & Rahman, A. K. M. A. (n.d.). No Title. In Sulfate resistance of concrete containing mineral admixtures, ACI Mater (Vol. 97, Issue 5, pp. 536–549.
-Yang, S., Zhongzi, X., & Mingshu, T. (1996). The process of sulfate attack on cement mortars, Adv. Cem. Based Mater, 4(1), 1–5.